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Abstract
Software engineering is an interdisciplinary approach to solving prob-
lems where a result to a particular problem is formulated in terms of
a software system. The means for mapping a desired solution design
to a working software system are programming languages that provide
different and, in general, disjoint sets of programming features. It is
that set of features which furnishes developers with a feasible approach
to express their intentions while developing software systems. While a
well-balanced set of programming language features can empower de-
velopers, a feature mismatch may impose constraints on their decision
making.

The use of specific language features in a solution design, however, can
be influenced by varying guidelines, expert opinions, and community
principles. As such cues are meant to encourage good programming
practices, and improve quality (e.g., maintainability) of resulting soft-
ware artifacts, it is expected that developers would adhere to the recom-
mendations they are provided with. But to what extent do developers
comply with such recommendations?

Even though many advances have been made in the field of software
engineering, our knowledge of developers practices (whether they com-
ply with recommendations they are provided with, in particular, and
how they use language feature, in general) remains somewhat sketchy.
Though existing literature provides us with some insights in this regard,
there are still unexplored facets that, when investigated, can result in
valuable insights into developers practices. Such an endeavor can as-
sist us in constructing a strong link between programming language
features and their application in practice, and also in identifying the
extent to which developers adhere to associated recommendations.

In this thesis, we attempt to close the above gap. For this purpose, we
investigate how developers employ a set of Java programming language
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features. The Java language offers various means for managing state
and behavior of an object including fields, properties and inner classes.
While fields are involved in representing the state of objects, proper-
ties provide us with a mechanism for defining so-called getters and set-
ters that allow for controlled access to an object’s state. Inner classes
yield a convenient method to decompose desired functionality within a
class into nested classes. These utilities facilitate the implementation
of functionalities, but from two different perspectives (managing state
vs. encapsulating behavior) and for three different levels of granularity
(field vs. method vs. class).

We investigate the use of the above language features in the context
of associated recommendations (i.e., guidelines, expert opinions, and
community principles). The key to our understanding of developer prac-
tices with respect to the selected language features here is an appre-
ciation of their typical usage patterns in Java-based software systems.
We construct descriptive models, describe observations, and discuss
the lesson learnt. We do not attempt, however, to establish any partic-
ular style guide on how developers must use fields, properties, or inner
classes, but rather show how developers usually employ those features
in practice.

As developers practices are imprinted in the code they produce, we
choose to study program code. In fact, we investigate the Qualitas Cor-
pus, a collection of more than 100 object-oriented Java-based software
systems. We define set of software metrics and extract them from the
Qualitas Corpus. We analyze the collected metrics with different sta-
tistical analysis techniques (i.e., frequency distribution analysis and
inequality analysis) to answer our research questions.

The findings of this thesis advance our current understanding of devel-
oper behavior and decisions with regard to the use of language features
(i.e., adherence to associated recommendations in particular, and the
use-cases of studied features in general). It assist us, for example, to in-
form developers and managers about the current state of software sys-
tems, to support language designers to construct better programming
languages, and to enrich software engineering education by reflecting
developers’ practices.
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Chapter 1

Introduction

This thesis focuses on understanding developer behaviors and deci-
sions, as represented in the program code they write, in terms of the
use of programming language features. We investigated the use of lan-
guage features in the context of associated recommendations that are
meant to support good programming practices. Our work is based on
an empirical analysis of hundreds of open source Java-based software
systems. The outcomes can inform developers and managers about the
current state of a software system, and can assist language designers
to construct better programming languages.

In this chapter, we introduce briefly the research context of this work
in section 1.1. We then present the research approach adopted in this
work in section 1.2 and the key contributions in section 1.3. We con-
clude this chapter by presenting, in section 1.4, an outline of the thesis.

1.1 Research Context and Objective

Software developers use programming languages to express the capa-
bilities of software systems. There are, however, differences in the way
a programming language yields its expressive power to developers. In
particular, we distinguish between language features that a program-
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ming language must support and language features that make a pro-
gramming language more versatile [138]. Moreover, available program-
ming language abstractions can influence developer effectiveness and
decision making. According to Scott [187], “language features clearly
have a huge impact on the programmers ability to write clear, concise,
and maintainable code, especially for very large systems”. Thus, while
a well-defined set of features can empower developers, an ill-defined
feature set can confine their creativity and productivity.

While employing programming language features in solution design,
developer design choices can be influenced not only by the available
language features, but also by associated recommendations. These
include expert advices (e.g., [105, 183]), design guidelines (e.g., [12]),
coding standard and conventions (e.g., [4, 10]). While some of this
advice is concerned with how one should approach solution design
(e.g., tell, don’t ask principle [109,110], law of demeter [132] in object-
oriented design), some others are involved in supporting certain lan-
guage abstractions through conventions (e.g., Java’s property mech-
anism is supported by code conventions [10]). These guidelines are
meant to encourage good programming practices and improve the qual-
ity (e.g., readability, maintainability) of resulting software artifacts [78].
It is, therefore, expected that developers would adhere to the recom-
mendations they are provided with. But to what extent do developers
comply with such recommendations?

The software engineering literature provides us with many different
studies on available programming languages features (e.g., [62,72,73,
93,140,145,208,209,217]) that relate to their usage patterns, appro-
priateness, and perceived quality. However, these studies focus only
on selected and generally disjoint sets of features and, hence, do not
provide us with (i) an understanding of how developers actually comply
with given recommendations with regards to the use of programming
language features in software development, and (ii) an approach to ex-
plore developer behaviors in this context.

Understanding what developers do in practice can assist (i) researchers
to comprehend and model developers practices, and thus allows to doc-
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ument and reason about common and unusual (if any) trends in devel-
oper design decisions, (ii) managers to utilize the resulting observations
to initiate any potential regulatory action when necessary, (iii) language
designers to refine existing (and design new) language features that bet-
ter reflect developer intentions, and (iv) peer developers and software
engineering students to learn about accepted practices in software de-
velopment.
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Figure 1.1: Reflective Activity

An intriguing aspect of software is that the decisions and preferences of
developers are imprinted in the program code they produce [217]. We
can exploit this fact and mine existing products (i.e., software systems)
in order to study how developers use specific programing language fea-
tures in solution design [140]. We do not have to observe developers
directly, but collect suitable metrics that would allow us to infer the
developer design choices and preferences (cf. Figure 1.1).

In this thesis, we studied a set of features (i.e., fields, properties, and
inner classes)1 of the Java programming language in order to gain in-
sights into, and build descriptive models of, developer behaviors in the
context of associated recommendations. An overview of the research
goals and outcomes are presented in Figure 1.2.

1Detail including rationale for selecting them is presented in chapter 2.
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Figure 1.2: Research Context - Overview

1.2 Research Approach

We adopted an empirical research approach. Such approach, by its very
nature, makes extensive use of quantitative information to yield a valid
conclusion. As a source of such information, we used software artifacts
(cf. Figure 1.3). In particular, we studied the Qualitas Corpus [77] that
offers a collection of 106 open source Java-based software systems.

To extract the required information from the above collection of software
artifacts, we used their compiled forms (i.e., Java class files comprising
bytecode).2 We defined set of software metrics and used a data min-
ing framework [139] that distills Java class files to produce required
metrics data. The collected metrics are used to study developer behav-
iors (as represented in the code they write) with regards to the use of
programming language features under the influence of available coding

2Bytecode can be used as alternative to source code as evident by many studies
(e.g., [35,140,144,145,206–209,216]). Detail discussion is presented in chapter 3.
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Figure 1.3: Research Approach - Overview

standards, guidelines, and conventions. For example, we defined soft-
ware metrics to capture the naming pattern of getter and setter meth-
ods in order to understand the developers’ tendency in adhering to Java
coding conventions [10].

The analysis of collected software metrics data is descriptive in na-
ture. To analyze them, we employed different statistical measures and
distribution-based analysis techniques. In particular, we used the Gini
coefficient - a robust inequality-based measure to summarize software
metrics data [216]. This approach has been used by Vasa [216] recently
and found to be useful for software metrics data analysis because of the
inherent nature of software metrics data (i.e., they follow skewed distri-
bution profiles with long tails [35, 173,228]). Furthermore, frequency
distribution analysis of software metrics is a technique commonly used
by many researchers (e.g., [49,207–209,225]).

Based on observations about aggregated metrics data, we model the
typical patterns of developer behaviors in using language features un-
der the influence of relevant recommendations they are provided with.
For example, to understand whether developers circumvent visibility
modifiers by using properties, we investigated the distribution (using
the Gini coefficient) of, and also the correlation (using Spearman’s rank
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correlation) between, private fields and getter setter methods in a given
software system.

However, we do not attempted in this work to formulate any style guide
on how developers should use language features in practice, rather we
revealed what they usually do.

1.3 Research Outcomes

In this thesis, we confirm existing theories, as represented by recom-
mendations in the literature (e.g., [12,69,105,106,114,183]), and present
new insights into the developers practices with regards to the use of
studied language features. The outcomes of this work are summarized
below:

Developers tend to adhere to recommendations

We show that developers tend to follow advices, design guidelines, and
code conventions offered to them. This is evident in case of the studied
language features: fields, properties, and inner classes of Java pro-
gramming language:

• In case of fields, advice like all data should be hidden within its
class [183], don’t expose state if you don’t have to [12] are mostly
followed with few exceptions. The extent of violations, however, is
minimal. For example, when developers expose states (either de-
liberately or accidentally), they take advantages only in few cases.

• In case of properties, contrary to conventional belief, we show that
they are neither commonplace nor evil. Given advices regarding
whether to use or avoid getter and setter methods in literature
(e.g., [69,105,106,114,183]), we show that developers proactively
select getter and setter methods in order to satisfy specific domain
requirements, not to circumvent data encapsulation.
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• In case of inner classes, due to anonymous classes being perceived
more clumsy and verbose as a consequence of their bulky syn-
tax [184] and associated readability concerns [4], it is often advised
to limit the use of anonymous classes [4]. Given this recommenda-
tion, we found that most of the anonymous classes comprise single
methods only (with a profile following Pareto principle [159]). This
suggests that developers may not intentionally make code clumsy,
rather it is an artifact of the induced application or framework
requirements (e.g., SAM types). Besides, developers tend to com-
ply with the advices (e.g., [95]) to avoid deep nesting, thus show a
tendency to avoid complexity and achieve a better code structure.

Moreover, given the advices regarding the use of inheritance, both
in favor (due to code reuse facility) and against (due to complexity
associated with deeper classes in the inheritance hierarchy [192]
and resulting maintenance difficulty [131]), we observed that de-
velopers tend to limit the use of inheritance while defining inner
classes.

Developers, while using language features, enjoy the flexibility of-
fered to them

We demonstrate that developers employ Java’s property mechanism, a
feature supported by code convention, as they desire. As a result, a
variety of patterns are observed to emerge. We identify a catalog of 10
distinct patterns (described in Chapter 5, Section 5.2.1) that capture
different definition of properties developers employ in practice. This
catalog shows that the developers utilize, according to their intentions,
the flexibility of defining properties offered by Java programming lan-
guage (unlike built-in support for properties available in other language
like C#).

Developers exhibit certain consistency in using language features

We show that there exists a certain statistical consistency (as repre-
sented by a small and narrow bounded region of computed Gini co-
efficients) among the developers in employing language features. We
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show that the distribution profiles of the studied language features are
highly concentrated in Java-based software systems, suggesting a con-
sistent practice. We identify a typical comfort range of the studied fea-
tures within which developers organize solution design. Though any
deviation from such observed region does not necessarily imply a prob-
lem, the bounded region may be an indicator of some form of cognitive
preferences of developers.

But even though the developers concentrate the studied language fea-
tures in a relatively few number of classes in general, we noticed that
the concentration profiles of some of those features (e.g., getter and set-
ter methods) are often negatively related to their proportions profiles.
This suggests that there is a tendency in developers to work with small
and manageable classes, causing the distribution of features to be dis-
persed across more classes. This indicates that some sort of God-like
aversive design strategy is practiced by developers.

Developers avoid some language features

We found evidence of mismatch between language designers’ expecta-
tion and developers’ application of certain language features. We ob-
served that the concept of local classes are being used very rarely in
the software systems of the Qualitas Corpus. Such rare use suggests
that this concept is not well-accepted by developers, and also indicates
that developers may not use a programming concept unless it offers
sufficient value. The rare use of local classes, however, merits an ex-
clusion of this concept from the Java programming language.

Support for language feature modification proposals

We show that, in case of anonymous classes, developers make use of
SAM types (abstract classes or interfaces that comprise only one ab-
stract method) substantially with a profile that follows Pareto princi-
ple [159]. This indicates that if similar functionality could be imple-
mented with more concise yet effective language constructs, developer
burden could be substantially scaled down. As SAM types are one cen-
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tral aspect of lambda expressions [20], the proposals (e.g., [182]) sug-
gesting anonymous classes to be replaced with lambda expression will
benefit developers to write more concise and readable program code.

Classification of the software systems in Qualitas Corpus

We classified the software systems in the Qualitas Corpus based on
their respective domains. In particular, we identified 12 major domains
(e.g., middleware, database). This classification, presented in Chap-
ter 3, Section 3.2.2, can help understanding diversity of the software
systems in the Qualitas Corpus, and can also assist studies that in-
volve domain-specific characterization of developer behaviors in using
programming language features in Java-based software systems.

Support for study of programming language features

We contribute to the research community an extensible framework for
metrics extraction and processing: jCT - a Java Code Tomograph [139].
It can be used to assist studies of developer behaviors in using program-
ming language features, and also studies that involve software metrics
data. Though jCT is built for Java, similar approach can be adopted
to study other languages (e.g., C#). In addition, jCT offers inequality-
based measures (e.g., the Gini coefficients, Lorenz curve), as recom-
mended by Vasa [216], to support software metrics analysis.

1.4 Structure of the Thesis

This thesis is organized into a set of chapters and an appendix. In this
section, we present a brief description of rest of the chapters. The key
content of each chapter is depicted in Figure 1.4.

In Chapter - 2 : Background and Motivation, we discuss the scope of
this thesis and cover the state-of-the-art to motivate this study.

In Chapter - 3 : Methodology, we discuss our research settings. In
particular, we describe the experimental data set and also the extrac-
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tion, processing, and aggregation techniques of software metrics data
necessary to achieve our research objectives.

In Chapters - 4 (Field Analysis), 5 (Property Analysis), and 6 (Inner
Class Analysis), we present the results of our investigation as obser-
vations that entail developers behaviors in employing fields, properties,
and inner classes, respectively, of the Java programming language.

In Chapter - 7 : Conclusions, we present the summary of this thesis,
discuss the contributions, implications, limitations, and identify the
possible scope of future work.

In Appendix, we present jCT- A Java Code Tomograph - an extensible
framework that enables us to work with emerging metrics definitions.
We developed and used this framework to address metrics requirement
in this work.
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Background and Motivation

In this chapter, we present the state of the art in the context of this
work. We begin with revisiting some preliminaries in section 2.1 to facil-
itate setting the foundation of our work. These are the basic process of
engineering software systems, underlying domains, programming lan-
guages, and coding conventions and design guideline that can affect the
use of language features in solution design. We then present available
studies on programming language features in section 2.2, where we dis-
cuss their four aspects: purpose, methodology used, key findings, and
limitations along with the benefits of overcoming them. Based on this
discussion, we formulate our research objective in section 2.3. Finally,
we conclude this chapter with a summary in section 2.4.

2.1 Preliminaries

Software - An Engineered Product

Software Engineering refers to “the disciplined application of engineer-
ing, scientific, and mathematical principles and methods to the economi-
cal production of quality software” [108]. It is concerned with address-
ing all the aspects necessary for producing and maintaining software
systems that satisfy the requirements as defined for them.
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The scope of software engineering covers the complete life cycle of soft-
ware systems. This includes the methodologies necessary for conceiv-
ing, designing, implementing, and maintaining the intended software
systems [45,174]. Each of these constituting areas integrates a variety
of engineering methods and has to adhere to certain conventions and
techniques in order to accomplish the desired tasks of building software
systems.

The purpose of software engineering is to navigate within a solution
space to seek out themost efficient and cost effective solution for a given
set of requirements. Given a particular problem, the search in a solu-
tion space begins with the acquisition, analysis, modeling, and verifi-
cation of the requirements of the associated stakeholders (e.g., clients,
users, etc.) [102,160]. In this process, a variety of approaches (e.g., in-
terviews, questionnaires, organizational document analysis) are being
employed [160,235] in order to define appropriate system boundaries.

The gathered requirements are being used to devise specifications com-
prising different aspects (e.g., data, functional, behavioral) of a desired
system. This assists in mapping the requirements to a design space in
order to structure and organize a model of the intended solution de-
sign. This model captures appropriate data structures and algorithms
that satisfy the constraints imposed by the underlying operating envi-
ronment. The physical representation of the model is the end product
- a software system.

A software system is defined as “computer programs, procedures, and
possibly associated documentation and data pertaining to the operation
of a computer system” [111]. Based on the purpose it serves, a software
system is focused on capturing a solution design of a particular problem
domain.

Domain

A domain is a problem space that enjoys a set of common features,
properties, activities, terminologies, and functionalities. Estublier et
al. [75] defined domain as “an area in which a number of stakeholders

12



Chapter 2. Background and Motivation 

 Middleware 

Database 

  Games 

    Parser 

  Domain Space 

   SDK 
      IDE 

Tools 

Multimedia 

Programming    

Language 
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is repeatedly performing similar activities”. A stakeholder can be a per-
son, a team, or a company that are all interested in conducting common
activities. In a domain, the stakeholders are involved in activities that
share common attributes, features, etc. In other words, domain is “a
set of current and future applications which share a set of common ca-
pabilities and data” [118]. It is a family of similar systems having some
common characteristics. For example, database is a problem domain
that involves storing information to and retrieving it from computer pro-
grams. Therefore, each database application (e.g., derby1, hsqldb2) has
a similar nature and shares common attributes. Figure 2.1 depicts a
set of different domains in the context of software engineering.

In the object-oriented context, a problem space is mapped to the cor-
responding object space through domain analysis [60]. Domain anal-
ysis is a process of identifying the commonalities and variabilities of
the particular domain. It captures “the activity of identifying the ob-
jects and operations of a class of similar systems in a particular prob-
lem domain” [158]. A more appropriate definition related to the field
of software engineering is provided by Arango [25]: “domain analysis
is the identification, acquisition and evolution of reusable information on
a problem domain to be reused in software specification and construc-
tion”. That is, gathering the common information from a problem area
in order to construct software systems.

1http://db.apache.org/derby/
2http://www.hsqldb.org/
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Figure 2.2: Conceptual model : Mapping domain space to solution
space

The outcome of domain analysis is a domain model. A domain model is
a problem-oriented architecture for the application domain that reflects
the similarities and variations of the members of the domain. A do-
main model describes all the entities, their properties, and relation-
ships among the properties. A domain model is mapped to concrete
software systems by using programming language features that cap-
ture domain abstractions (cf. Figure 2.2).

Programming Language

Programming languages3 are the means for expressing computations.
To articulate desired computations, programming languages usually
offer different concepts. These programming concepts are organized
around a computation model (also called thought model [180]) that pro-
vides us with the abstract means to capture computations.

There are many different computational models available, each with
its own distinct form for representing desired computations and each
comes with its own programming techniques. For example, while object-
oriented techniques provide us with the means to express desired com-

3A programming language is defined as “a language used to express computer pro-
grams” [111]. Though this definition covers a wide family of languages (e.g., low-level,
high-level), we use the term “programming language” to refer to high-level languages
(e.g., C, C++) in this work.
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putations based on the use of state and inheritance, functional pro-
gramming encourages the use of higher order abstractions (e.g., mon-
ads and currying), and logic based languages (Prolog) support the use
of Horn clauses [215].

Based on the thought models, programming languages can be classified
into two general categories: imperative and declarative (cf. Figure 2.3)
[180]. Imperative languages cater for computations as transformation
of states as a process in time, whereas declarative languages usually
offer a set of stateless mathematical functions for expressing desired
computations.

However, a programming language does not only evolve around a com-
putation model. It is also designed to address the issues of an intended
domain. The domain knowledge is embedded into the software systems
through a programming language. A particular programming language
can capture only a specific domain abstraction or it can be independent
of any specific domain. Based on the focus of captured abstractions,
programming languages can be either general purpose (GPL), or domain
specific (DSL) [147].
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A general purpose programming language provides powerful abstrac-
tion mechanisms, independent of any particular domain. In general,
the available syntax and semantics of a GPL are domain agnostic. This
enlarges the scope of a GPL, and thus enables us to devise solutions of
problems that originate from a wide variety of domains. Examples of
widely accepted general purpose programming languages include C++,
Java, and C#.

General purpose programming languages, though similar in nature,
are equipped with different and often disjoint sets of language features
to serve a range of domains. For example, C can be used for system
programming purposes (e.g., writing compiler, operating systems) as
well as for building a game engine or an accounting software system.

A domain specific programming language, on the other hand, caters
to problems of a particular domain. Deursen et al. [212] defined a do-
main specific language as follows, “A domain-specific language (DSL) is
a programming language or executable specification language that of-
fers, through appropriate notations and abstractions, expressive power
focused on, and usually restricted to, a particular problem domain”. That
is, a DSL is more specialized than GPL and thus provides high-level
abstractions through domain specific constructs and notations. Exam-
ples of commonly available DSLs include SQL (database queries), HTML
(hypertext markup), and VHDL (hardware design), MATLAB (technical
computing), and LATEX (typesetting).

Still, regardless of the type of programming language, many different
additional guidelines [10,183] are often provided to facilitate the use of
available constructs. Such guidelines include coding standard and con-
ventions for a particular programming language and experts advices on
how one should employ the features available in that language during
software development. We discuss such conventions and guidelines in
the following section.
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Coding Standards and Design Guidelines

In this work, we consider coding standards as a broad umbrella term
that covers conventions and expert advices in relation to language fea-
tures in order to encourage better programming practices.

A coding standard, as defined by Howles [107], defines the format and
gives a consistent structure to the code. The purpose is to guide devel-
opers to a common style. While some standards [151, 152] have been
developed with a certain context (e.g., safe use of C/C++ in critical sys-
tems) in mind, some are optionally provided with programming lan-
guage specifications. For example, the C# language specification does
not define any coding standard [15] but the Java programming language
provides us with specific coding conventions to follow [10].

Coding conventions can often be used as alternative means to accom-
plish the flavor of built-in language features. Consider, for example, the
mechanism to allow access to the values of private fields of an object.
To achieve this, C# provides built-in support to read, write, or compute
associated fields through properties. Java, on the other hand, relies
on specific naming conventions to allow the developers to define the re-
quired properties through a pair of public methods, namely getter and
setter methods [10].

Moreover, coding conventions can also be used as an alternative to con-
figuration files (i.e., convention over configuration) to implement a partic-
ular functionality. When the associated conventions are being adhered
to, the underlying system can extract required information from them,
and thus developers’ burden to deal with additional configuration files
is reduced. For example, instead of employing an XML-based configu-
ration file, conventions can be used for defining beans (and associated
autowiring purposes) in the spring framework. Many other frameworks
(e.g., Ruby on Rails) encourage the use of conventions, and thus tend
to comply with principles like write beautiful code favoring convention
over configuration [22].
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A failure to comply with designated coding standards (when available)
can incur inconsistency in program code. For example, consider a
variable name that represents the number of lines in program code.
The name of such variable can appear in different forms, for example,
line_count, linecount, LineCount, as a result of an associated developer’s
style. Though all of those names are valid from the perspective of the
language, different naming conventions can result in maintenance over-
head, particularly in large projects where hundreds of developers work
together. Moreover, software systems are rarely maintained for their
whole lifetime by the same original author [10]. Therefore, it often be-
comes harder for new developers to comprehend program code that does
not comply with associated coding standards.

Adherence to coding standards, on the other hand, can yield a number
of benefits. These include (i) code consistency (as everyone follows the
same standard), (ii) lower learning curve of program code (arising from
better readability and comprehensibility), (iii) reduction of the likelihood
of potential bugs (as a result of clarity in code). These features, in turn,
improve code quality, resulting in increased maintainability. As almost
80% of the lifetime cost of software systems are associated with main-
tenance [10], adherence to coding standards is strongly encouraged to
reduce such cost [16,78].

However, in addition to the coding standards and conventions, there
are expert advices available in the literature (e.g., [85, 105, 163, 183])
that are intended to support good programming practices and also to
assist better (in terms of maintainability, for example) solution designs.
For example, Gamma et al. [85] suggest to “favor object composition
over class inheritance”. Parnas [163] emphasizes to keep object repre-
sentation hidden. Such advices, however, can regulate the use of some
language constructs. For example, hiding object representation may
cause an increased use of private visibility modifiers of fields, and less
frequent appreciation of the non-private ones.
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Summary

Software systems are engineering products, and are build to address
the necessities of different domains (e.g., database, middleware). The
key to map a problem domain to working software systems are program-
ming languages that are equipped with suitable features. The available
features provides the developer with the necessary flexibility to express
their design decisions. To facilitate the use of such features, differ-
ent coding standards and expert advices are often provided. However,
do developers actually use and adhere to coding standards and con-
ventions? Are there specific preferences in how they employ language
features driven by the choice of coding standards?

2.2 Studies of Programming Language Features

The software engineering literature covers a diverse set of issues in the
context of studying programming language features and associated de-
sign decisions of the developers. To facilitate our understanding of cur-
rent practices in this context, we discuss the related work from the
following four specific perspectives:

• Purpose - What is the focus of a particular study?

• Methodology - What research approach and data analysis tech-
niques are undertaken?

• Findings - What are the key observations?

• Knowledge gaps - What has not yet received much attention?

Purpose

The available work (e.g., [37,41,49,50,50,62,65,93,98,103,125,141,
143, 145, 171, 206–209, 224, 225]) on programming language features
has different objectives in general. However, based on the primary fo-
cus, we categorize it into the following two key areas:
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• Use of language features in software development, and

• Impact of language features on software quality attributes (e.g.,
maintenance, reliability).

The trend of studying how programming language features (e.g., inher-
itance, encapsulation) are being used by developers has been an active
area of research. A common theme of such research is to mine the prod-
ucts built by the associated developers to reveal their design decisions.
In this context, many researchers (cf. Table 2.3) empirically investigated
the usage of features available in various programming languages. For
example, Tempero et al. [77, 208, 209] studied how different features
(i.e., fields, inheritance) available in Java are being used by developers,
Callaú et al. [49] examined the usage of dynamic features provided by
Smalltalk, and Counsell and Newson [62] investigated the use of friends
functions in C++.

In addition, programming language features are also studied in order to
assess their quality impact, where the key interest is to discover any po-
tential relation between the use of particular language feature and qual-
ity attributes (e.g., maintenance, reliability). For example, Cartwright
and Shepperd [50] investigated the quality impact of inheritance in C++-
based software systems, and found substantial differences in defect
densities between classes that employ inheritance and and classes that
do not.

Methodology

Typical methodologies adopted in the above studies include

• A survey that involves the collection of necessary data through
communicating with the developers in form of questionnaires, in-
terviews, etc. For example, Gorschek et al. [93] used on-line ques-
tionnaires in their study to collect necessary data.

• An empirical investigation that involves mining necessary software
metrics data from a collection of software systems. The size of such
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Table 2.1: Data set used in Different Studies

Study System(s) Investigated
Cartwright and Shepperd [50] 1
Wang and Hou [225] 1
Mancl and Havanas [143] 1
Subramanyam et al. [202] 1
Harrison et al. [98] 2
Harrison et al. [98] 2
Counsell and Newson [62] 4
English et al. [73] 4
Bhattacharya and Neamtiu [37] 4
English et al. [72] 13
English and McCreanor [74] 20
Holkner and Harland [103] 24
Melton and Tempero [145] 81
Tempero et al. [209] 93
Tempero [207] 100
Tempero et al. [208] 100

collection may vary depending on the type of study (i.e., while a
large scale study can examine hundreds of software systems, a
case study can focus on only one of them). Table 2.1 presents an
overview of different studies and corresponding number of soft-
ware systems investigated.

To analyze the mined software metrics data, different statistical tech-
niques (cf. Table 2.2) are often used. We classify the primary analysis
approaches into the following two categories:

• Frequency Distribution Analysis:
This involves an analysis of a particular attribute of interest by
counting its frequency of occurrence in a given entity. For exam-
ple, while Tempero [207] investigated field (attribute) usage pattern
in Java-based software systems (entity), Callaú et al. [49] inves-
tigated the use of dynamic features in Smalltalk-based systems
using frequency count (e.g., percentage of the use of a particular
attribute).

• Evaluation of Hypothesis:
This entails a formulation of specific hypotheses and their eval-
uation using different statistical techniques (cf. Table 2.2). For
example, while English et al. [72,73] used the Pearson Chi-square
Test for hypothesis testing, Bhattacharya and Neamtiu [37] per-
formed Linear Regression Analysis for that purpose.
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Table 2.2: Statistical Techniques Used in Different Studies

Statistical Techniques Studies
Frequency Analysis Tempero et al. [207–209], Callaú et al. [49],

Wang and Hou [225]

Spearman Rank Correlation English et al. [72], Cartwright and Shepperd
[50]

Pearson Correlation Counsell and Newson [62]
Linear Regression Cartwright and Shepperd [50], Bhat-

tacharya and Neamtiu [37]
Chi-square Test Melton and Tempero [145], English et al.

[72], Harrison et al. [98]
t-test Bhattacharya and Neamtiu [37]

Key Findings of Available Work

The available studies provide us with rich body of knowledge regarding
the usage and quality impact of programming language features. We
summarize their key elements in Table 2.3.

Table 2.3: Studies on Programming Language Features

Study Language Investigation Findings include:

Tempero et
al. [209]

Java Usage Most types (classes and interfaces) in Java-based soft-
ware systems are relatively shallow in the inheritance
hierarchy.

Tempero
[207]

Java Usage Though the developers define non-private fields, they
are less likely to use them.

Tempero et
al. [208]

Java Usage Found evidence of substantial overriding practices (i.e.,
most of the subclasses in a software system override at
least one inherited method).

Callaú et al.
[49]

Smalltalk Usage Dynamic features are rarely used in practice

Briot and
Guer-
raoui [41]

Smalltalk Usage Rich and reusable libraries of classes, together with the
flexibility offered by Smalltalk, allow the language to be
a very good foundation for concurrent and distributed
programming.

Counsell and
Newson [62]

C++ Usage Friend functions are extensively used for facilitating
global operator overloading functions.

Cartwright
and Shep-
perd [50]

C++ Usage Limited use of object-oriented language features such as
inheritance and polymorphism in the investigated C++
software system.

Wang and
Hou [225]

C++ Usage The most advanced nature of function overloading tends
to be defined in only a few utility modules (in the systems
programming area of the investigated software systems,
Mozilla).

22



Chapter 2. Background and Motivation

English et al.
[72]

C++ Usage The use of the friend constructs is independent of other
class design issues. Moreover, this study also confirm
that there is no link between friend constructs and in-
heritance, contrary to findings (i.e., friend constructs
might be used as an alternative to inheritance) by Coun-
sell and Newson [62].

Voigt et al.
[224]

Java and C# Usage Inconsistent programming practices are found regard-
ing the use of encapsulation concept. Moreover, object
encapsulation is found to be more intuitive and also pro-
vides object-oriented design advantages when compared
to class encapsulation.

Tempero et
al. [206]

Java Usage There is a significant amount of unused code in the in-
vestigated software systems.

Melton
and Tem-
pero [145]

Java Usage Classes with a non-private static method or field (which
is accessed from another class) are likely to be involved
in dependency cycles.

Knuth [125] Fortran Usage Typical use frequencies of Fortran constructs for sup-
porting compiler design/optimization.

Malayeri and
Aldrich [141]

Java Usage Java programs could be somewhat improved by using
structural subtyping.

Gorschek et
al. [93]

OO Con-
cepts

Usage The investigation focused on understanding how devel-
opers make design decisions (i.e., how developers under-
stand and apply available theory and advices on good
object-oriented design. While developers follow the ad-
vice on hiding representation, they tend to violate ad-
vices regarding class size and depth.

Muschevici
et al. [155]

CLOS, Dy-
lan, Cecil,
Diesel, Nice
and Multi-
Java

Usage There are potential demand for multiple dispatch in Java
programs if it is supported by the language.

Holkner
and Har-
land [103]

Python Usage Dynamic features, particularly non-reflective dynamic
features (e.g., using objects dynamically and dynamic
code execution) are being used in all studied programs.
About 70% of these programs have less dynamic activity
after startup. This indicates that RPython - a subset of
Python that is statically typed [24], can be used as re-
placement for Python in some cases. RPython permits
a full set of Python features to be used up to a certain
point (e.g., class initialization), then a restricted set of
features may be used for achieving runtime efficiency.

Cartwright
and Shep-
perd [50]

C++ Quality Im-
pact

There exists a substantial difference in defect densities
between classes with and without the use of inheritance.
Classes employing inheritance are three times more
defect-prone than classes without inheritance struc-
ture.
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Daly et
al. [65]

C++ Quality Im-
pact (Main-
tenance)

Software systems with a hierarchy of 3 levels of inheri-
tance depth are approximately 20% quicker to maintain
than software system without inheritance. This obser-
vation, however, is based on an investigation of only 2
small programs (less than 450 lines of code) written in
C++. Besides, the maintainability is checked by 31 stu-
dents. Therefore, the conclusion may not represent the
true impact of inheritance on maintenance of contem-
porary software systems.

Harrison et
al. [98]

C++ Quality Im-
pact (Main-
tenance)

Software systems that do not employ inheritance are
comparatively easier to modify than software systems
comprising more involved inheritance hierarchies.

Bhattacharya
and Neamtiu
[37]

C/C++ Quality Im-
pact (Main-
tenance)

Programs written in C++ are less prone to bugs and also
have a higher internal quality when compared to pro-
grams written in C.

Mancl
and Ha-
vanas [143]

C++ Quality Im-
pact (Main-
tenance)

The use of object-oriented features resulted in mainte-
nance benefits.

Ponder and
Bush [171]

Smalltalk Quality Im-
pact/Usage

Polymorphism can significantly affect quality attributes
(i.e., program understandability) if abused.

English et al.
[73]

C++ Quality Im-
pact/Usage

Classes declared as friends have higher coupling than
classes not declared as friends. Furthermore, the num-
ber of friends of a class influence the number of pro-
tected and private members in it

English
and McCre-
anor [74]

Java and
C++

Quality Im-
pact

C++ systems might be more difficult to maintain or com-
prehend than Java systems.

Holtz
and Ras-
dorf [104]

Fortran 77,
Pascal, C,
Modula-2

Quality Im-
pact

Programming constructs available in different lan-
guages can contribute to code complexity and under-
standability.

Subramanyam
et al. [202]

Java and
C++

Quality Im-
pact

Java classes that exhibit higher values of DIT metric and
C++ classes that comprise higher values of CBO metric
are associated with higher number of defects

The observations presented in Table 2.3 suggest a variety of issues re-
garding language features. They are twofold: issues discussed in the
context of language features supported by a language, and issues re-
lated to incorporating new features to a language.

An available language feature can give rise to problems. For exam-
ple, rare use of dynamic features (e.g., behavioral and structural re-
flections) in Smalltalk [49]) indicates a potential mismatch between the
language designers’ expectation regarding adoption of such features by
developers and the actual acceptance by them in practice. Similarly,
the advanced nature of function overloading [225] in system program-
ming area suggests its usefulness in specific domains. A list of similar
indications is presented in Table 2.4.
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Table 2.4: Indications associated with use-case of language features

Language Feature(s) Indications based on Use-Case
Dynamic Feature [49] Mismatch between language designers

expectation and developers practices
Function Overloading [225],
Friend Functions [62], Rich
language abstractions [41]

Usefulness of certain features in specific
domain (or for specific purpose)

Method Overriding [208] Well-accepted programming concept (as
developers use them extensively)

Inheritance [209] Use of programming concepts in a cer-
tain style (e.g., preferred inheritance hi-
erarchy is shallow)

Encapsulation [224] Inconsistent programming practice

Moreover, complex language abstractions may cause developers to in-
correctly use them. For example, higher depth of inheritance (DIT) is
associated with higher defects [50, 202]. This suggests that the use
of inheritance to construct deep class hierarchies may be somewhat
difficult, causing possible chances to introduce faults when using in-
heritance at deeper levels. The findings also indicate that the avail-
able language abstractions may ease (e.g., [143]) or complicate (e.g.,
[74, 98, 104, 171]) different types of work (e.g., writing, understanding
and maintaining code) for developers.

Adding new features to language may improve productivity. For exam-
ple, Malayeri and Aldrich [141] investigated the usefulness of structural
subtyping in Java. Structural subtyping is a form of typing where the
subtype relationship is determined based on the definition or structure
of the type. More precisely, X is a structural-subtype of Y when every
abstract member of Y has a matching member in X [142]. This feature
is available in languages like Objective Caml [130] and PolyToil [44]. The
study concluded that Java programs could be somewhat improved by
using structural subtyping in some cases. They found, for example,
32% usage of reflections (involving Class.getMethod) can be rewritten
using structural downcasts.4 They summarized that developers often
emulate structural types through the use of reflection.

4Downcast means casting a reference of a base class to one of its derived classes.
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Another example is themultiple dispatch - a feature that considers more
than one argument of a method while determining the target method for
execution. This feature is available in languages like Cecil [51], Diesel
[52], MultiJava [59]. But commonly known object-oriented languages
(e.g., Java) offer single dispatch mechanism where a target method is
determined by dynamic type of only its first argument (i.e., method re-
ceiver, this). Muschevici et al. [155] investigated Java programs to de-
termine scope to use multiple dispatch. They found that this feature
is often being simulated by using cascaded instanceof - a construct
used for runtime type testing. They suggested that multiple dispatch is
beneficial as it can assist to improve the expressiveness of a language
by providing first class alternative to cascaded instanceof, and con-
cluded that Java programs could benefit from multiple dispatch if it
were provided.

Knowledge Gaps

The outcomes of the studies summarized in Table 2.3 do not include de-
velopers preferences in using language features that are associated with
available coding standards and conventions (e.g., properties in Java).
Another key limitation of the existing studies is that they provide us
with insufficient information regarding a systematic approach to study
the use of programming language features in the context of coding con-
ventions.

We can only succeed to assist developers with better language con-
structs for building software systems if we have comprehensive knowl-
edge on all aspects of the concepts available in programming languages.
These include not only the knowledge on language features and their
applications in practice, but also the developers preferences in adhering
to available coding standards, experts advices and design guidelines.
Therefore, it would be useful to study language features from this per-
spective with an aim to bridge the gaps that remain unanswered.

The outcomes of such study could be useful from a number of differ-
ent perspectives. One of them is programming language design. As
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language design is an experimental task (where each prototype imple-
mentation is often improved to reflect developer preferences and evolv-
ing necessities), the insights gained from this study may be used to
support programming language design and evolution. In particular,
the outcomes may support the notion of evidence-based language de-
sign [155] - retaining or refining language features based on evidences
of use-cases.

Moreover, the outcome could assist software managers, maintenance,
and quality assurance personnel with insightful information on devel-
oper tendencies in adhering to coding standards and design guidelines.
As consistency in developer practices assists organizations in improv-
ing software quality [30], they can adopt regulatory actions based on
the resulting outcomes of this study.5

2.3 Research Objective

Developers are influenced directly or indirectly by available coding stan-
dards, conventions, and expert advices. Although prior work in this
space informs us about the use of language features, their quality as-
pects, and a little about tendency in following expert advices, we do not
have a comprehensive understanding on how developers are directed by
the recommendations offered in the conventions. Our work focuses on
this gap. In particular, we address the following question:

What is the nature of developers behaviors in using program-
ming language features in response to the influence of avail-
able coding standards, conventions, and design guidelines?

The investigation of this question involves many different relevant en-
tities. Figure 2.4 provides us with an overview of such entities, and
identifies which specific ones are involved in this study. This figure de-
picts a typical scenario of the interactions among the entities, and thus
covers a wide variety of languages and coding standards that one can

5A more detail discussion is presented in conclusion chapter (implication section).
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Figure 2.4: Entities involved in our study

consider to answer the question asked above. But rather than look-
ing at different languages, we aim at answering this question in the
context of one specific language, Java, and generalizing our observa-
tions for similar languages. This decision allows us to conduct a more
focused and extensive investigation.

Java is one of themost widely used programming language in the object-
oriented programming realm. It has been used to develop both com-
mercial and open source software systems.6 Moreover, an increasing
number of researchers (e.g., [35,144,145,156,208,209]) are found to
be interested in studying this language, indicating its acceptance in
the research community. The wide acceptance of this language in both
academia and industry motivated us to study this language.

6See http://www.sourceforge.net and also [77] for collection of such software sys-
tems.
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The Java programming language is equipped with a wide variety of fea-
tures. However, rather than investigating them all in one study, we
decided to explore any small subset in depth. Moreover, not all of the
features available in Java are related to the question we aim to answer.
Therefore, it is necessary to decide on which features to focus when
describing the influence of coding standards and conventions on de-
veloper preferences. This requires selecting a certain set of features
that are relevant, unexplored, and associated with coding standards,
conventions and guidelines, respectively.

Given this context, we considered two aspects of the object-oriented
programming paradigm (cf. Figure 2.5). These are (i) object state man-
agement, and (ii) object behavior implementation. The Java program-
ming language offers abstractions for serving both of these purposes.

 

Selected Programming Language and Features  

Object State  

Management 

 Programming  

Language 
Java 

Object Behavior  

Implementation 

Fields and Properties Inner Classes 

Purpose 

Corresponding  

Language features 

Figure 2.5: Selected language features

In Java, the state of an object is represented by fields. Access to fields
is regulated by visibility modifiers (e.g., public, private). To shield in-
ternal state of objects from external access, associated fields are often
made private. A private field can only be accessed externally or mod-
ified through the property mechanism (i.e., so-called getter and setter
methods). As Java lacks built-in support for the property mechanism,
developers have to adhere to coding conventions, which requires a prop-
erty to be signified by two components [71,153]: the field name associ-
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ated with the property and the prefix “get" and “set" to denote a getter
and setter, respectively. If the name of a field is Color, then the name of
the corresponding getter and setter methods are getColor and setColor.

While fields and properties are involved in managing state of objects,
there are language constructs for implementing the behavior of objects.
One such construct is the notion of inner classes that are predomi-
nantly used to structure events in domain models. In particular, it is
generally accepted that inner classes are designated primarily for de-
veloping adapter classes [4], though other types of usage are possible.
They also offer convenient mechanism (i.e., callback facility - program-
matically privileged relationship between an inner class and its enclos-
ing class) for developing event-based systems.

The underlying reasons for selecting properties and inner classes in-
clude the following:

• Limited empirical evidence exist on the use of these features, par-
ticularly properties and inner classes, in Java-based software de-
velopment.

• Little is known about the how developers utilize coding conven-
tions in accomplishing the flavor of built-in language feature (i.e.,
while properties in Java are convention, they are built-in language
feature in C#).

• There is debate surrounding the use of inner classes, particu-
larly anonymous classes, in Java-based software development (i.e.,
whether anonymous classes should be replaced with lambda ex-
pressions [182,184]).

The use of the selected features can be affected by different guide-
lines (e.g., [4]), opinions (e.g., [105,183]), and principles (e.g., Tell, Don’t
Ask [109,110], Law of Demeter [132]). Table 2.5 presents some insights
into these guidelines and thus represents the theoretical expectation
regarding the use of selected programming language features.7 Given

7Detail discussion is presented in respective chapters.
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such guidelines and opinions, it would be useful to know how develop-
ers actually comply with them.

Table 2.5: Some advices, which represent theoretical expectation, re-
garding the use of selected programming language features

Language Features Advices/Guidelines/Conventions
Fields (i) All data should be hidden within its class [183], (ii) Don’t expose state if

you don’t have to [12].
Properties (i) Do not change the state of an object without going through its public in-

terface [183] - suggests to use getter and setter methods. (ii) Getter Setters
are evil [105], (iii) Tell, Don’t Ask principle [109,110] - avoid using getter
methods, (iv) Law of Demeter [132] - avoid getter methods.

Inner Classes (i) Limit the use of anonymous classes [4], (ii) Anonymous classes can make
code difficult to read [4], (iii) Anonymous classes are considered more ver-
bose and extremely clumsy as they have bulky syntax [184], and therefore
can make code somewhat difficult to read.

As adherence to the available coding standards and advices results in
many benefits (e.g., better readability, comprehensibility, and maintain-
ability of program code [78]), we can expect that developers, in general,
follow the standards offered to them. But we have little empirical evi-
dence to test such expectations against developer tendencies in prac-
tice. In this work, we attempt to understand developer behaviors in this
context. In addition, we demonstrate different aspects of their behavior
that are associated with the use of selected language features.

In particular, we make our initial research question more concrete and
ask

What is the nature of developer behaviors in using fields, prop-
erties, and inner classes of the Java programming language
with respect to the influence of associated coding standards,
conventions, and design guidelines?
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2.4 Summary

The available programming languages and their associated features
have been studied by many researchers (e.g., [50,50,77,145,202,206,
208]). Their investigations are mainly concerned with two different
facets of available language features: usage patterns and quality as-
pects. There is another arc of similar studies [141, 155] that investi-
gated the scope to incorporate new features by identifying use-cases of
certain constructs that appear to be an emulation of features available
in other languages.

However, the key limitations of available studies is they do not provide
us with enough insights into developer tendencies in practicing lan-
guage features under the influence of available coding conventions and
guidelines. Moreover, we do not have a systematic method to study
language feature in this context. These additional details are neces-
sary in order to raise our capability to study language features, and
also to enrich our understanding on developers preferences in employ-
ing language features in solution design from the perspective of coding
conventions and guidelines.
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Methodology

The nature of our work motivated us to select an empirical research
approach that involves collecting information from experimental data
set, and summarizing the distilled data with suitable aggregation tech-
niques. This approach is presented in this chapter by decomposing
it into the following two facets: (i) selecting software artifacts, and (ii)
measuring software artifacts. In the first facet (section 3.2), we present
the context of our experimental data set and selected software arti-
facts. In the second facet (section 3.3), we describe how we measured
the selected software artifacts. This involves the process of defining,
collecting, and analyzing necessary software metrics. We conclude this
chapter by presenting a summary of the methodology in section 3.4.

3.1 Introduction

In order to achieve our research objective, we conduct an empirical
study. Such study, when compared to an analytical or theoretical one, is
considered to be comparatively closer to the real world [98]. Moreover,
“empirical studies play a fundamental role in modern science, helping
us understand how and why things work, and allowing us to use this
understanding to materially alter our world” [166].
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An empirical study can be conducted by adopting either qualitative or
quantitative research methods, or even both, depending on the prob-
lem specific settings [231]. To yield a valid conclusion, a qualitative
method relies on materials in the form of results of interviews, surveys,
questionnaires, observations derived from non-numerical and textual
data, images, and so on. [149,188]. On the other hand, a quantitative
method completely depends on objective data (often numeric in form)
for the same purpose [166].

In this work, we use a quantitative method that involves mining neces-
sary software metrics data from a collection of software artifacts, and
analyzing them with statistical methods [166]. The selection of this
method is justified by the fact that developer practices are imprinted
into the software artifacts that they produce. Therefore, software ar-
tifacts can be used as a source of meaningful information regarding
what developers actually do. Based on this fact, many researchers
(e.g., [35,88,140,144,145,156,206–209,216]) used software artifacts
as source of required information in their studies that resulted in valu-
able insights regarding not only the associated software artifacts, but
also the underlying developer design decisions.

Our work involves the following two steps:

• Selecting Software Artifacts

– Identifying a representative collection of software artifacts that
can be used as the basis for our observations.

• Measuring Software Artifacts

– Mining the selected software artifacts to extract relevant soft-
ware metrics that capture the features of programming lan-
guage we are interested in, and

– Aggregation and analysis of the distilled software metrics data
to achieve our research objective.
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3.2 Selecting Software Artifacts

3.2.1 Context

In this study, we investigated open source software systems. In the
following section, we provide an introduction to open source software
systems and also the underlying reasons for selecting this domain for
investigation.

Open Source Software Systems

Software systems can be developed in a different fashion. Raymond
[179] describes two styles of software development: the cathedral and
the bazaar. The former refers to the classical development model in-
volving a well-organized, full-time development team in a closed envi-
ronment, and the later is concerned with software development with
loosely-organized, volunteer developers to yield open source software
systems.

Table 3.1: Criteria of Open Source Software Systems

Criteria Description
Source Code The source code of the software system must be available either in any

distribution media (with a reasonable reproduction cost in this case) or
downloadable from internet without any charge. Obfuscated source code
and intermediate forms (e.g., the output of a preprocessor or translator)
are not allowed.

Derived Works Modifications and derived works are allowed by the license.
Integrity of the Au-
thor’s Source Code

The distribution of modified source code must be allowed. It is required
for the derived works to carry a different name or version number from
the original software.

Free Redistribution The software system must be redistributed without any fee.
No Discrimination No discrimination against any persons, group of persons, or fields of en-

deavor. That is, it may not limit the usage of the programs in any selected
domain.

Distribution of Li-
cense

The rights attached to the program must apply to everyone to whom the
program is redistributed without any additional license.

Technology Neutral-
ity

License must be technology-invariant and must not impose restrictions
on other software systems.

Open Source Software refers to software systems that are free, available
in source code form, and adhere to the Open Source Definition as reg-
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ulated by the Open Source Initiative - a non-profit organization.1 The
definition2 of open source comprises the criteria described in Table 3.1.

The notion of Open Source Software has attracted an enormous atten-
tion in recent years. These software systems are well known today for
their adaptability, reliability, and portability [38]. Open source devel-
opment supports faster system growth, more creativity, more modular-
ity, and is less likely to have defects as these are discovered and fixed
rapidly [165]. The development process is empowered by the collabo-
rating developers working on open program code.

The loosely coupled community of developers spread across the world
contribute voluntary often without any institutional support [100]. The
associated developers are driven by a variety of reasons [100], including
social and technological motivations [39]. The developers gain reputa-
tion for talented work [39] as the contributed code is visible to members
of the community.

Studying Open Source Software

The key motivations for selecting the open source paradigm in our study
are (i) permissive licenses that permit study, (ii) access to quality soft-
ware systems, (iii) a basis to study how developers really tend to em-
ploy programming language features to build software systems without
any constraints imposed on them, and (iv) an accepted approach by
research community (for example, Godfrey and Tu [90] used Linux to
study its evolution, Vasa [216] used a collection of 40 open source soft-
ware systems to study their growth and change dynamics). In addition,
the use of open source software systems is also a cornerstone in stud-
ies [207–209] that are related to this work. For example, Tempero et
al. [209] investigated a corpus of 93 software systems to understand
the inheritance structure in Java applications. Such studies indicate
that open source software systems can serve as a fruitful basis for a
variety of research projects.

1http://www.opensource.org
2http://www.opensource.org/docs/osd
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3.2.2 Experimental Software Artifacts

The choice of a specific set of software artifacts depends on the research
objectives of a study. As our work involves investigation of language
features available in Java, we restrict our focus to Java-based software
systems only.

A well accepted data set comprising a curated collection of open source
Java-based software systems is the Qualitas Corpus [77]. Many re-
searchers have used this data set as reference in their studies (see [13]).
However, Qualitas Corpus has different releases. It is therefore neces-
sary, at least to allow for replication of our results [77] to commit to
a specific version. Hence, we selected the release 20101126 [177] as
primary data set for our study.
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Figure 3.1: System Size Distribution in Qualitas Corpus

The Qualitas Corpus 20101126 provides a curated collection of 106
software systems with varying size. The size is measured as total num-
ber of types present in a software system. The size distribution of Qual-
itas Corpus is depicted in Figure 3.1 and ranges from 49 (jasml) to
32,475 (netbeans) with the median value of 901.
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The software systems in Qualitas Corpus are diverse in nature. An
overview of the diversity, in terms of domains of constituent software
systems, is presented by Tempero et al. [77]. This overview, however,
is not detailed enough to allow for studying developer practices in us-
ing programming language features in Java-based software systems.
In particular, we cannot investigate per se whether the usage patterns
of language features vary across domains. For this reason, we devel-
oped a high-level domain specific classification of the software systems
available in Qualitas Corpus.

Based on the nature of functionality provided by these software sys-
tems, we categorize them into 12 different domains. These are (i) Parser/-
Generator/Make, (ii) 3D/Graphics/Media, (iii) Games, (iv) IDE, (v) Dia-
gram Generator/Data Visualization, (vi) Database, (vii) SDK, (viii) Mid-
dleware, (ix) Server, (x) Programming Language, (xi) Testing, and (xii)
Tool. We describe the general criteria used in categorizing the software
systems below.

• Meta-tools (Parser/Generator/Make)
A software system that is used to build executable programs from
provided source code and associated libraries. In general, such
software systems read an associated configuration file or makefile
that comprises the necessary information for producing the corre-
sponding target program. For example, apache ant is used to build
Java applications and javacc is used as a parser generator for Java
applications. While the former reads build files for constructing
executable Java programs, the later processes a grammar specifi-
cation for transforming it to corresponding Java artifacts.

• Integrated Development Environment (IDE)
A software system that provides comprehensive support for soft-
ware development activities by integrating the necessary compo-
nents (e.g., source code editor, corresponding compiler, interpreter,
debugger). Moreover, such software systems usually provide gen-
erally useful libraries, packages, GUI (graphical user interface)
and build automation tools. Popular IDEs for software develop-
ment include eclipse and netbeans.
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• 3D/Graphics/Media
A software system that offers functionality like drawing graph-
ics, playing media files, etc. For example, sunflow is a rendering
system for photo-realistic image synthesis, joggplayer is a media
player, and art of illusion is a 3D-modeller, ray tracer, and ren-
derer.

• Testing
A software system that provides support for software testing ac-
tivities, either as a stand-alone application or as part of another
application. For example, junit is a unit testing framework. It
facilitates test driven development by supporting automated unit
test cases generation. Findbugs is an application that looks for
bug through static analysis of source code. While junit can be in-
tegrated with IDEs (e.g., eclipse), findbugs works as stand-alone
application.

• Software Development Kit (SDK)
A development kit that enables software development activities for
a certain target system (e.g., hardware platform, operating sys-
tem, software framework). It offers, in general, illustrative sample
projects, platform or system specific APIs and libraries, documen-
tations, development tools, simulators, and emulators. For exam-
ple, geotools-2 (gt2) is a library for manipulation of geospatial data
for geographical information systems (GIS).

• Middleware
A software system that provides a set of services that allowmultiple
processes (running on one or more machines) to interact with each
other. It comprises a reusable set of abstraction that provides sup-
port for application development with a well defined set of libraries
and APIs. In addition, it mediates between an application program
and a network in order to simplify the development of complex and
distributed applications. For example, a software system that fa-
cilitates interaction between an application and database servers
is a data access middleware (e.g., c-jdbc is a database cluster mid-
dleware).
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• Server
A software system that provides the functionality of processing re-
quests of, and delivering necessary data to, other client programs
(running on one or more machines). For example, jboss is an Java
EE-based application server.

• Diagram Generator/Data Visualization
A software system that is focused on presenting data in visual
form. This category also includes software systems with the pur-
pose of report generation (e.g., textual, graphical). For example,
while jgrapht is a diagram generator, itext is a library that facili-
tates the tasks of creating and manipulating PDF documents.

• Tool
An application that is focused primarily on accomplishing a par-
ticular task or providing specific services (e.g., creating, modifying,
analyzing). This includes standalone applications, editors, toolk-
its, libraries for supporting specific task, etc. For example, while
weka is data mining tool, jedit is an editor.

• Games
Software systems which are either games or provide support for
developing games. For example, megamek is a turn-based strategy
game and marauroa is multiplayer online game engine framework.

• Database
A software system that provide support for data management ac-
tivities (e.g., data access, update, delete, persistence). For exam-
ple, apache derby, hsqldb are relational database management
systems.

• Programming Language
This category includes different programming languages. For ex-
ample, aspectJ is an aspect-oriented extension of Java program-
ming language, and JRuby is an Java implementation of the Ruby
programming language.

Table 3.2 presents the 12 categories and the list of software systems
belonging to them. It should be noted that there are some domains
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Table 3.2: Domains of the Software Systems in Qualitas Corpus

Category Applications Count
Parser / Generator/
Make

ant, antlr, javacc, jparse, maven, nekohtml, sablecc, xalan,
xerces

9

3D/Graphics/Media aoi, drawswf, galleon, jhotdraw, joggplayer, sunflow 6
Games freecol, marauroa, megamek 3
IDE eclipse, netbeans, checkstyle, drjava, nakedobjects, 5
Diagram Generator
/ Data Visualization

argouml, displaytag, exoportal, ireport, itext, jasperreports,
jext, jgraph, jung, velocity

10

Database axion, derby, hsqldb, squirrel_sql 4
SDK colt, gt2, jchempaint, jFin_DateMath, jpf, trove 6
Middleware c_jdbc, castor, cayenne, hibernate, informa, ivatagroupware,

jena, jspwiki, jtopen, myfaces_core, openjms, oscache, pic-
ocontainer, tapestry, quartz, quickserver, springframework,
struts, xmojo

19

Server freecs, james, jboss, roller, tomcat, webmail 6
Programming Lan-
guage

aspectJ, jruby 2

Testing cobertura, emma, findbugs, fitjava, fitlibraryforfitnesse,
htmlunit, jrat, junit, quilt, log4j, pmd

11

Tool azureus, columba, compiere, ganttproject, heritrix, jag,
jasml, jedit, jfreechart, jgraphpad, jgrapht, jgroups, jmeter,
jmoney, joggplayer, jrefactory, jsXe, lucene, mvnforum, poi,
pooka, proguard, rssowl, sandmark, weka

25

Total 106

(i.e., middleware and tools) that comprise comparatively more software
systems. The underlying reasons include both the nature of these soft-
ware systems, and also the general criteria used in classifying them.
We do not make any claim, however, that this classification is perfect.
Its primary aim is to serve as a vehicle for studying developer deci-
sions with respect to the use of programming language features. Other
interpretations are possible. For example, a further decomposition of
the categories into primary and secondary type could accommodate or-
thogonal system characteristics (e.g., pmd, currently classified as test-
ing tool, has also significant characteristics that warrant a secondary
classification: IDE). Such decomposition may give rise to a refinement
of our classification but they are not part of this investigation.

3.3 Measuring Software Artifacts

The selected software systems are required to be measured in order
to achieve our research objective. In this section, we describe how we
measured them. To facilitate our understanding, we divide this section
into three different facets (i) the process of measurement - presents fun-
damentals of software measurement, (ii) software metrics - comprises
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definition and extraction process of metrics data, (iii) analyzing soft-
ware metrics - describes techniques used in summarizing metrics, and
(iv) inequality measure - a technique used to analyze metrics involved
in this work.

3.3.1 The Process of Measurement

A. Core principles

“Measurement is the process by which numbers or symbols are assigned
to attributes of entities in the real world in such a way as to describe
them according to clearly defined rules” [81]. The rules of assignment
can include any consistent relations, except random assignment, that
capture the underlying intent [117]. Thus, the measurement process
entails a mathematical characterization of a particular attribute for dif-
ferent purposes (e.g., better understanding, assessing current state,
and improving).

While Fenton & Pfleeger [81] define measurement as “a mapping from
the empirical world to the formal, relational world”, Kitchenham et al.
[122] demonstrate this mapping through a structural model of mea-
surement that captures the objects involved in measurement and the
interaction among them (cf. Figure 3.2).

The real world comprises entity and attribute. While an entity repre-
sents an object of real world (e.g., a computer, a software system), an
attribute captures a property of that entity. For example, the number of
total line of code in a software system is an attribute that describes the
size of that system. On the other hand, the mathematical world con-
tains a measurement instrument that captures the values of different
attributes and expresses them in units of associated scale type.3

The scale type is important in any type of measurement. According to
Pfleeger et al. [168] “unless we are aware of the scale types we use, we
are likely to misuse the data we collect”. For example, central tendency

3There are different types of scales available in measurement literature. These are
Nominal, Ordinal, Interval, Ratio and Absolute scale [80,81,201].
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Figure 3.2: A Structural Model of Measurement by Kitchenham et
al. [122]

measures (e.g., mean) locate the middle of a data set by dividing the
aggregated data by the total number of data elements. But, the notion
of mean does not convey any meaningful information if the underlying
scale types are nominal or ordinal. The former assigns labels to data
elements whereas the latter uses ranks, and therefore standard de-
scriptive operations (e.g., mean, variance, standard deviation) on these
scales are meaningless. While median is appropriate for ordinal scale,
it is inapplicable for the nominal one. The ratio scale allows all types
of statistical measures [201]. Therefore, one should be aware of scale
type and appropriate statistics during software measurement.
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In this work, we made use of neither ordinal nor interval-scaled data
(as the nature of our study does not demand them). The only use of
nominal-scale is the classification of the primary input data set into
different domains (e.g., database, games). Apart from this, our metrics
data processing involves mostly absolute-scaled data.

B. Types of Software Measurement

The software engineering literature [79, 81] provides us with different
types of software measurements. For example, while the purpose of
measurement leads to one classification, the nature of the attributes
measured results in a different categorization.

Based on the purpose (or usage) of measurement, there are two differ-
ent categories of measurement: assessment and predictive measure-
ment [79]. Assessment measurement is concerned with measuring the
current value of some attributes. This aims at capturing better insights
into the status of an entity. On the other hand, predictive measurement
focuses on formulating a mathematical model based on current status
of an entity. The model assists in envisaging any desired future mea-
sure(s), and thus offers a means to manage and control a target system.

However, measurement can also be categorized by the way it is being
conducted: direct measurement and indirect measurement. While the
former involves measurement of only one attribute, the later entails
more than one attribute [81]. For example, measuring the size of a pro-
gram requires only one attribute - total number of lines of code. On the
other hand, measuring productivity of associated developers demands
two attributes - both number of lines and devoted effort in terms of
hours spent. The productivity can only be determined by dividing total
lines of code by total hours spent to develop the program.

3.3.2 Software Metrics

A software metric can be defined as “a quantitative measure of the de-
gree to which a software possesses a given attribute” [112]. For example,
the number of fields and the number of methods defined in a class of an
object-oriented software system are two metrics that reveal the informa-
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Figure 3.3: Types of Software Measurement [79,81]

tion storage density and the decomposition of breadth of functionality in
that class, respectively [217]. While these two metrics capture internal
aspects of a class, there are software metrics that indicate external as-
pects (e.g., maintainability, productivity). For example, the higher val-
ues of CBO (i.e., coupling between object classes [56]) and LCOM (i.e.,
lack of cohesion in methods [56]) metrics are associated with greater
design effort, greater rework, and lower productivity [54].
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Figure 3.4: Types of Software Metrics [81]

Consequently, a software metric can be classified into two categories
based on the scope that is covered: metrics that capture internal at-
tributes and metrics that capture external characteristics. The former,
as the name implies, is specific to the entities involved, and measured
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by analyzing the features of its own (e.g., size, modularity, coupling).
The later is involved with the surrounding environment and captures
operating characteristics (e.g., maintainability, comprehensibility, and
reliability). However, while the internal attributes can be determined
statically, the external attributes are generally recorded dynamically
(relating to the associated environment) [1].

As principle tenants of a measurement process, software metrics fall
into two more categories: direct and indirect metrics [81]. A direct met-
rics is defined as “a metric that does not depend upon a measure of any
other attribute” [112]. It refers to the absolute/raw counts of an attribute
(the value of a direct metric can be any positive integer including zero
values). On the other hand, indirect metrics are those which can be ob-
tained by applying a mathematical function (e.g., average, summation,
percentage, median) on two or more (not necessarily direct) measures.
For example, total lines of codes in a given program is direct metric.
But the developers productivity (obtained by dividing the total lines of
code by total hours of effort devoted by the associated developers) is an
indirect metric.

In our work, we define a set of direct metrics that capture the internal
attributes of Java-based software systems (cf. Figure 3.4), which allow
us to investigate the use of fields, properties, and inner classes in Java-
based software systems. Once the desired set of metrics are defined,
however, these are required to be extracted from the selected software
artifacts. We now describe the basic process of defining the required
software metrics and the process of collecting them.

Defining Software Metrics

According to Kitchenham et al. [123] we need to “define all software
measures fully, including the entity, attribute, unit and counting rules”.

The scope of this study covers only the software product metrics. In
particular, we compute direct metrics and internal attributes (cf. Fig-
ure 3.4). For this purpose, our metrics computation model takes a class
of an object-oriented software system as an entity and the associated
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elements of interest as attributes (cf. Figure 3.5). For example, given
a particular class, we compute the number of getter methods and the
number of setter methods to gain insights into the extent of data re-
trieval and modification functionality, respectively, implemented in that
class.

Moreover, all the computed measures covered in this study aim at cap-
turing different aspects of investigated features of the Java program-
ming language. We describe the definitions of these metrics in the re-
spective chapters.

Extracting Software Metrics

A typical Java-based software system contains many different com-
ponents (cf. Figure 3.6). These include compiled class files, images,
sounds, and configuration files. All these components are bundled to-
gether into a single unit by archiving and compressing them into a spe-
cial type of file - Jar (Java archive). Jar files facilitate the distribution
process of the components that belong to a particular application (e.g.,
desktop, applet).

There are various common functionalities (e.g., graphical user inter-
face, database transaction and connection management) that are often
required in many Java applications. To facilitate application develop-
ment, such functionality are usually adopted from third party libraries,
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Figure 3.6: A typical Java-based software system [216].

components, plug-ins, etc. For example, Apache Cayenne4 is an open
source persistence framework that offers the functionality of mapping
any relational database to Java objects. Apache Commons CLI5 is a
command line options processing library that offers necessary API for
parsing and validating a command line interface. These libraries are en-
capsulated and deployed in jar files that can be consumed by tools (e.g.,
JVMs, compilers). An application that requires object relational map-
ping features and command line support can employ the above two util-
ities for these purposes, and focus on the development of only the core
components that are necessary to satisfy the specific requirements of
the application. Both the core components and the third party libraries
(if any) - in the forms of individual building block (i.e, Jar files) - con-
stitute the desired software system. However, we should only measure
the core artifacts as they are the sole representatives of the developer
decisions with respect to the software under investigation.

Given a Java-based software system, we use the associated jar files as
input. Figure 3.7 depicts an overview of the metrics extraction pro-
cess. To distill necessary metrics data from a software system, we used
jCT [139] - a metrics extraction framework developed as part of this

4http://cayenne.apache.org/
5http://commons.apache.org/cli/
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Figure 3.7: The metrics data mining process.

study.6 jCT reads a configuration file (cf. Listing 3.1) [77] located in the
root directory of every system in the corpus. This file contains meta-
data authored by the creators of Qualitas Corpus [77]. jCT constructs
the input data set necessary to perform metrics extraction by process-
ing this meta-data. In particular, we use the sourcepackages entry to
determine which classes are core (as defined by Qualitas Corpus [77])
and should be considered for analysis. This step is required since con-
temporary software systems, in general, make extensive use of third-
party libraries (cf. Figure 3.6). Therefore, we need a mechanism to
select the right set of artifacts for analysis [216].

Once the right set of artifacts has been identified, we use the class files
for desired software metrics data extraction. A class file is the compiled
version of a Java source file. The Java compiler takes a source file
(with .java extension) and translates it to a (set of) class file(s) (with
.class extension). These files contain platform-independent bytecode
instructions (cf. Figure 3.8) and metadata that contains, for example,
information to locate and load classes, resolve method invocations, and
enforce security constraints. Both, the bytecode instructions and the
metadata, make up a runtime image of the corresponding Java class(es)
that the Java VMuses to producesmachine-dependent code at runtime.

6jCT (Java Code Tomograph ) is presented in Appendix B
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1 /∗∗ The content of the configuration f i l e ∗/
2 fullname = Ant

3 domain = parsers/generators/make
4 notes = −
5 acquisitiondate = 2010−07−26
6 acquisitionperson = Ewan Tempero

7 language = Java

8 languageversion = −
9 origin = Apache

10 url = http ://ant .apache. org/
11 releasedate = 2010−05−07
12 opensource = true
13 obfuscated = fa lse
14 ersionnotes = Release date from news

15 sourcepackages = org .apache .tools
16 ource = fa lse
17 binaryroot = bin/apache−ant−1.8.1
18 exclude = etc

19 version = 1.8.1
20 qcname = ant

Listing 3.1: The content of the configuration file

To extract metrics data, we use the bytecode contained in the class files.
To gain an insight into bytecode, consider a simple Java program that
just prints Hello for example. When this program is compiled, the Java
compiler produces a class file that contains a set of bytecode instruc-
tions shown in Figure 3.8. We process such bytecode instructions to
mine necessary information for this study.

Our decision to use bytecode, rather than using source code, is moti-
vated by the fact that except comments all the information of a source
file are captured by the corresponding class file [140,216,217].7 As a
result, bytecode can be used in place of source code to yield the required
information. In fact, a vast number of researchers (e.g., [35,140,144,
145,206–209,216]) used bytecode in their studies also.

Yet, bytecode is not exactly the replacement of source code. There are
some constructs that are being eliminated as a result of the compi-
lation process. For example, bytecode does not retain any comments

7A more detail discussion on class file structure and contained information is pre-
sented in Appendix B
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public class Hello extends java.lang.Object{ 

public Hello(); 

  Code: 

   0:   aload_0 

   1:   invokespecial   #1; //Method java/lang/Object."<init>":()V 

   4:   return 

public static void main(java.lang.String[]); 

  Code: 

   0:   getstatic           #2; //Field java/lang/System.out:Ljava/io/PrintStream; 

   3:   ldc                     #3; //String Hello 

   5:   invokevirtual   #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V 

   8:   return 

} 

public  class Hello{ 

public static void main( String args[] ){ 

System.out.println( "Hello" ); } 

} 

 

 
javac 

Figure 3.8: A simple Java program and the generated bytecode in-
structions.

contained in the source code. Moreover, all the local variable names
available in source code are also absent in the corresponding bytecode.
Therefore, a study that requires such information may not consider
bytecode as only source of information. But, as our research objec-
tive does not depend on such information, the choice of bytecode as
source of required metrics data remains unaffected.

Still, there are some issues that deserve attention while working with
bytecode. A potential limitation of working with bytecode is imposed
by the use of a code obfuscator. An obfuscator, when applied, changes
the content (e.g., class, method, and field names) of a compiled file in
order to protect them from being reverse engineered, and thus make it
difficult to reveal the original purpose of associated bytecode structure.
This issue, however, is not a concern for us as the data set used in this
work contains non-obfuscated code. In fact, code obfuscation would
disqualify a system from being included in Qualitas Corpus [77].
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Another issue is associated with the inner class processing mechanism
of the Java compiler. While compiling a class that hosts inner class(es),
the Java compiler emits a separate class for each of the hosting class,
and hosted class(es). This results in an issue: whether all these classes
should be counted separately or the compiled inner classes should be
merged with their corresponding host classes. Depending on which
approach is being followed, the experimental results could be substan-
tially different.

Though some studies (e.g., [216, 220]) merge them with host classes,
we consider them as separate ones. Our data mining process does not
combine the inner class measures with that of their host classes. The
resulting benefits of this decision is that we can study inner classes
separately, and also reason about their structures.

Another issue that one should also consider while working with byte-
code is the compiler generated synthetic methods and attributes if nec-
essary. In our analysis, all such methods and attributes are ignored.

3.3.3 Analyzing Software Metrics

Software metrics data is required to be summarized in order to gain
better insights into associated software systems. Aggregated software
metrics facilitate data interpretation tasks and thus reveal the state of
the intended aspects of software systems.

Software metrics can be aggregated using different methods. A method
is defined as a set of organizing principles around which empirical data
is collected and analyzed [68]. The scope of the method covers a wide
variety of principles for analyzing, organizing, structuring, and inter-
preting all empirical data to address each aspect of the desired research
problem.

Given the diversity in the field of empirical software engineering, decid-
ing on a suitable method is still a non-trivial task. According to East-
erbrook et al. [68], “selecting a research method for empirical software
engineering research is problematic because the benefits and challenges
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to using each method are not yet well cataloged”. It is difficult to find a
well accepted catalogue that covers necessary selection criteria for the
available methods, associated risks, benefits, challenges, and also the
appropriateness in particular problem context. Therefore, it becomes
often necessary to a select problem-specific method that suits the un-
derlying requirements of the study. Deciding on a particular method,
however, demands a number of factors to be considered.

Key Issues

What are the key factors that can affect the selection of an appropri-
ate metrics aggregation technique? The factors include not only the
problem itself but also the associated scale of measurement and also
the nature of the key ingredients of empirical studies: software metrics
data (cf. Figure 3.9).

 

Nature of the Problem 

Scale of Measurement 

Nature of Metrics Data 

Aggregation Method Selection: Key Issues 

Figure 3.9: Key issues that can affect the selection of aggregation
method for software metric data

The nature of our study involves an investigation of developer prefer-
ences regarding the use of language features under influence of avail-
able guidelines. This entails an analysis of the distribution of vari-
ous features across different classes in Java-based software systems.
For example, our focus includes whether developers create solution de-
signs where certain proportion of classes capture most of the features
(and thus become God-like classes - a design practice that is discour-
aged [183]). Therefore, the nature of our problem demands an aggre-
gation method that can capture the underlying distribution profiles of
programming language features.
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Figure 3.10: Distribution Pattern (a) Typical Shape of Normal Distri-
bution (b) Observed Shape of Software Metrics (Number of Fields in
Apache Ant-1.8.1) Distribution

The scale of measurement is an important issue as any aggregation
technique must be aware of the underlying scale involved in the study
to eliminate the chance of misleading data processing. The metrics
data processing in our study does not involve any nominal, ordinal, or
interval scale data but absolute-scaled data.

Software metrics data is, in general, skewed in nature [82, 124, 204].
It exhibits positive skewness with long tails (cf. Figure 3.10(b)). Our
metrics data distributions are no exception. Therefore, the underlying
aggregation technique is required to be aware of the asymmetric nature
of software metrics distributions.

Available Techniques for Software Metrics Analysis

It is customary to use the commonly available central tendency mea-
sures (e.g., mean, median) to summarize metrics data. But the non-
Gaussian nature of software metrics data makes those measures some-
what inappropriate and often misleading [217]. The reason is that
these techniques are not found to take into account the underlying na-
ture of metrics data distributions. The more skewed the distribution,
the more likely a sampled mean will underestimate the true underlying
mean [121].
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Table 3.3: Different Approaches for Summarizing Software Metrics
Data [216,221]

Metric Summarizing Approaches
Approach Methods/Measures include:

Conventional

Mean
Median
Standard Deviation
Skewness
Kurtosis

Distribution Fitting Power Law Analysis
Pareto Principle

Inequality Analysis Gini Coefficient
Lorenz curve

The common standard descriptive statistical measures like “average"
or “arithmetic mean" can only work if the measured population has
a Gaussian distribution (cf. Figure 3.10(a)). They tend to be less-
informative, and often deceptive if used in summarizing a data set that
is skewed. For example, the mean value of the number of fields in
classes of ant-1.8.1 (cf. Figure 3.10(b)) is 2.90 whereas the median is
1. The underlying reason for this discrepancy can be attributed to the
presence of a few large values (compared to the others) that create the
long tail. In ant-1.8.1, 39.88% of the classes do not comprise any fields
at all but 0.88% classes contribute 9.89% of total fields. This indicates
an (ecological) fallacy [172] of mean in representing the actual situation
in this case.

Though there are measures available for skewed data analysis (e.g.,
skewness and kurtosis that capture the asymmetry and the peaked-
ness of data, respectively), they offer unbounded values and are also
affected by the underlying data set size [217]. As a result, the flexibil-
ity to compare different aspects of software metrics data straightway
becomes somewhat limited.

As an alternative approach, many researchers (e.g., [35, 61, 219]) try
to fit different distributions (e.g., log-normal) to software metrics data
for various purposes. For example, while Baxter et al. [35] used power
laws to understand the shape of Java-based software systems, Concas
et al. [61] used the same for demonstrating the presence of scaling laws
in a Smalltalk-based software systems. Moreover, Vasa et al. [219] used
a power scaling relationship to analyze the recurring structural and
evolutionary patterns in object-oriented software systems.
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Unfortunately, the distribution fitting techniques cannot be used for
meaningful comparison of software metrics data associated with differ-
ent software systems [216]. Moreover, some of these techniques (e.g.,
Pareto principle, Log normal, and Power law distribution [181]) do not
allow any zero or negative values. But software metrics data often con-
tains substantial number of zero values [92]. Therefore, the application
of these distributions becomes restricted or incur additional work (i.e.,
eliminating zero values or transforming them to acceptable forms).

There exist, however, a promising alternative for analyzing softwaremet-
rics data with econometric techniques (e.g., inequality measures like
Lorenz curve [135] or the Gini coefficient [89], ). Many researchers
(e.g., [140, 216, 217, 221, 222]) used such techniques in their studies
for different purposes. For example, Vasa [216] applied the Gini coef-
ficient for summarizing software metrics data to study software evolu-
tion, whereas Lumpe et al. [140] adopted the same technique to analyze
the property mechanism in Java-based software systems.

Our Focus

Our study involves a collection of software artifacts that varies in terms
of their functionalities, underlying domains, and size. Therefore, a
method must facilitate meaningful and direct comparisons of software
metrics data across different software systems regardless of their un-
derlying attributes (e.g., size, distribution). In our study, we use an
inequality measure (i.e., the Gini coefficient) to summarize software
metrics data.

3.3.4 Inequality-based Software Analysis

In 1905, Lorenz [135] introduced a graphical representation to study
the distribution of a particular attribute in a given population. In fact,
this technique aims at measuring the extent of inequality in income dis-
tribution in a society.

56



Chapter 3. Methodology 

Perfect Equality Line  

Lo
re

n
z 

C
u

rv
e

  

 

B A 

Cumulative proportion of population  

 

100% 

C
u

m
u

la
ti

v
e

 p
ro

p
o

rt
io

n
 o

f 
in

co
m

e
  

 

0 

25% 

25% income belong to  

50% population  

 

50% income belong to  

75% population  

 

50% 

75% 

P 

Q 

R 

25% 50% 75% 100% 

Figure 3.11: Lorenz Curve Illustration

Consider, for example, a society with population of size n and associ-
ated income of w. To graphically represent the underlying inequality of
income distribution among the members of the society, the cumulative
proportions of population are plotted along the x-axis, and the corre-
sponding cumulative proportions of income are plotted along the y-axis.
The resulting curve is known as the Lorenz curve (cf. Figure 3.11).

Each point (x, y) on the Lorenz curve captures the relationship that y%
income is received by the bottom x% of the population. For example,
while the point P on the Lorenz curve depicted in Figure 3.11 indicates
that 50% of the total population earn only 25% of the total income, the
other point Q denotes that 75% of the population earn 50% of the total
income. The rest (50%) of the income belong to the remaining 25% of
the population. This way the Lorenz curve reaches point R that implies
100% of the population own 100% of the total income.
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• Gini Coefficient  = A/ (A+B),   

 

Where 
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shaded area, and   
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Figure 3.12: Lorenz Curve and Gini Coefficient

If the income happens to be equality distributed (i.e., everyone’s income
is exactly same), then the Lorenz curve produces a straight diagonal
line – perfect equality. On the other hand, any inequality in distribution
makes the Lorenz curve bend in the middle (cf. Figure 3.11). This works
with non-negative data, and so the Lorenz curve lies between the line of
perfect equality and that of perfect inequality (i.e., no one earns except
one person).

The Lorenz curve captures inequality in distribution graphically, it is,
however, more practical (and often more desirable) to work with numer-
ical values. Hence, we need a numerical value that can capture the
graphical representation. This is the Gini coefficient which is defined
as a ratio of the areas on the Lorenz curve diagram. If the area between
the 45◦ line of perfect equality and the Lorenz curve is A, and the area
under the Lorenz curve is B, then the Gini coefficient is A/(A + B) [234]
(cf. Figure 3.12).

More precisely, for a given population of metrics data xi, i = 1 to n, that is
indexed in an increasing order such that xi ≤ xi+1, the Gini Coefficient
G is defined as:

G =
1
n

(
n + 1− 2

(
∑n

i=1(n + 1− i)xi

∑n
i=1 xi

))
(3.3.1)

58



Chapter 3. Methodology

 

Population 
Entity  

(e.g., Classes) 

Income 
Attributes 

(e.g., Getter Methods) 

Society Software System 

Economic Domain Software Domain 

1 to 1  

Mapping 

Figure 3.13: Applying Inequality Measure in Software Analysis

The Gini coefficient is a number in the interval [0,1), where 0 denotes
perfect equality (i.e., the allocation of features adheres to an even pat-
tern) and 1 stands for perfect inequality (i.e., there is only one God-class
in the system). The higher the value of Gini coefficient, the more con-
centrated the distribution is.

Application in Software Analysis

How does econometric measurement work in the context of software
analysis? In order to analyze software systems with an econometric
measure, we have to map the associated entities from the economic
domain to the software domain as illustrated in Figure 3.13. Given a
software system, we consider it as a society. The classes and associated
attributes are regarded as population and income, respectively.

For example, if we are interested in revealing the distribution pattern
of getter methods in netbeans-6.9.1, then we can use the correspond-
ing Lorenz curve (cf. Figure 3.14). We see that the getter methods in
netbeans are concentrated in only a few classes. About 78.76% classes
of netbeans do not define any getter methods at all. The corresponding
Gini coefficient is 0.83, indicating a very high concentration of getter
methods in netbeans-6.9.1.
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Figure 3.14: Lorenz curves example - Getter methods hosting profile
of classes in Netbeans - 6.9.1

Key Benefits

Table 3.4: The Benefits offered by Inequality Measure

Gini Coefficient - Fast Facts
Feature Attribute Benefit(s)
Coefficient Value [0,1) A bounded value offers direct means to compare dif-

ferent software metrics data (unlike average that pro-
duces different values depending on the size of the as-
sociated data set). This provides us with the oppor-
tunity to compare desired aspects of software systems
straightway.

Data Distribution Agnostic As underlying data distributions do not affect the Gini
coefficient, the same way as central tendency mea-
sures it allows us to compare different software metrics
data conforming to different distributions. For exam-
ple, it can be applied conveniently to process software
metrics data that is skewed.

Data Set Size Agnostic Different software systems can comprise a varying
number of artifacts. The Gini coefficient is, however,
a size independent measure. It captures the effective
inequality in distribution irrespective of the size of the
population.

Using the Gini coefficient in software metrics data analysis provides
us with a number of benefits. These include the bounded value and
independence of data distribution and data set size. These key benefits
are described in Table 3.4.
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Moreover, the Gini coefficient can often reveal valuable insights into
the change in distribution of certain aspects of software systems which
remains completely blind to traditional central tendency measures (e.g.,
median) [217].

3.4 Summary

In this chapter, we described the methodology adopted in this work.
The nature of our study motivated us to select an empirical research
approach that involves collecting quantitative information, and sum-
marizing the distilled data with suitable aggregation techniques.

We described different characteristics (e.g., size distribution) of our data
set. Moreover, we classified the software systems in Qualitas Corpus
into 12 different categories (e.g., database, middleware, tools). Though
this classification is based on the nature of functionality provided by the
associated software systems, we do not claim it to be the only one. But
it serves our purpose (i.e., ensures diversity of the data set, and also
forms the basis for domain-specific characterization of developer prefer-
ences in using programming language features in Java-based software
systems).

In addition, we discussed our measurement procedure for the selected
software systems (i.e., Qualitas Corpus). The description covered two
different aspects: (i) basic measurement process and (ii) underlying
software metrics.

In the former aspect, we illustrated basic measurement principles, and
associated scales of measurement that govern the application of appro-
priate summarizing techniques of software metrics data. We described
scale-specific statistical operations that are employed during software
measurement. We argued that the nature of metrics data we work with
conforms to the absolute scale.

In the later aspect, we discussed software metrics extraction, process-
ing, and aggregation techniques. We illustrated how we extracted de-
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sired software metrics data from Java-based software systems. We jus-
tified our choice of working with bytecode rather than source code.
In addition, we discussed available software metrics aggregation tech-
niques, and inequality measures - a recently adopted technique for soft-
ware metrics summarization. We described the usefulness of this tech-
nique in the context of our work.

There are, however, some limitations in our methodology. For example,
we used open source Java-based software systems to base our results
on. Therefore, we do not know whether or not the resulting conclusions
would remain same in case of other programming languages or software
systems that are not being developed under open source development
model. Another issue could be the representativeness of the data set.
But this concern is curtailed by the diversity (cf. Table 3.2) of software
artifacts in Qualitas Corpus [77]. This raises our confidence regarding
the external validity of the conclusions arising from this study within
the context of Java-based software systems.
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Field Analysis

In this chapter, we focus on understanding developer behavior in using
fields. We begin with setting the stage for studying the use of fields in
Java-based software systems and formulating specific research ques-
tions. We then describe the analysis method (that comprises a defi-
nition of a set of software metrics and description of metrics analysis
approach) in Section 4.2. We present the results of our investigation as
observations in Section 4.3. Finally, we summarize the key findings of
this chapters in Section 4.4.

4.1 Introduction

A fundamental principle of object-oriented programming is data encap-
sulation [83,157]. It aims at ensuring the integrity of the state of object
instances by concealing them from the surrounding environment. To
facilitate controlled access to an object’s state, developers are provided
with a key mechanism - visibility modifiers (e.g., private, public) to re-
strict the access to fields that represent an object’s state.

Java provides four visibility modifiers for fields: public, protected, pri-
vate, and package [26]. Each of them regulates varying level of access
to the associated field. A field with the public visibility modifier can
be accessed from anywhere in the software system. While the protected
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modifier restricts the scope of field access to the same package and sub-
classes, the package modifier limits the scope to the associated package
only. The private modifier limits it even further, enforcing the access to
be scoped to the defining class only. Though we have varying level of vis-
ibility control, general recommendations in software engineering theory
limit public access [183].

But how do the developers use fields in Java? Do they adhere to the
recommendations (e.g., don’t expose state if you don’t have to [12])? In a
recent study, Tempero [207] analyzed the use of fields, and discovered
that most studied systems contain non-private fields, which may be
taken as an indicator for a systematic breach of data encapsulation in
those systems. However, the actual number of exploits is much smaller.
Only 12% of the exposed classes (i.e., classes that contain at least one
non-private field [207]) are subject to non-private field access. Tempero
stipulated that non-private fields may be a result of accidents (or over-
sights) rather than conscious design decisions as the studied systems
do not take advantage of non-private fields.

In this chapter, we investigate developer tendencies in adhering to avail-
able advices regarding the use of fields in particular, and the associated
design choices in general. We revisit some of the results (e.g., extent of
exposed classes) of the above study where appropriate. Thus extend
its validity by replication - an important element in empirical studies
emphasized by many researchers (e.g., [43,194,233]). Moreover, follow-
ing Tempero’s recommendation [207], we restrict our focus on mutable
(e.g., non-final) and object-based (i.e., non-static) fields. While the fi-
nal fields are considered to be “safe" from the field exposure perspec-
tive [207], static fields tend to be used in different roles (i.e., used to
define constants which are not object-specific) than instance fields.

In particular, we address the following questions:

• RQ1: What is the typical field distribution profile that developers
usually practice? Do they follow available recommendations?

• RQ2: Does field distribution vary across different domains (e.g.,
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middleware, database)? Do the results of RQ1 hold at domain
level?

• RQ3: Do developers define fields in all classes in Java-based soft-
ware systems? What is the typical distribution of field hosting
classes and field inheriting classes?

• RQ4: Given a software system, are the volume and distribution of
its fields correlated?

• RQ5: What is the typical profile of field exposure in Java-based
software systems? Do developers confine exposed fields in a few
classes or do they disperse them in almost every field hosting
class?

4.2 Analysis Method

To answer the above research questions, we defined a set of software
metrics, and analyzed them using different measures (e.g., the Gini
coefficient). In this section, we describe them in more detail.

Definitions of Metrics

To investigate the field distribution profiles in studied Java-based soft-
ware systems, we collected different fields measures (cf. Table 4.1).
These measures capture different fields with various visibility modifiers
(e.g., public, private). We also defined a set of class measures that as-
sist us in studying the distribution of different aspects of classes with
fields (e.g., how many classes typically comprise fields, how many of
them host exposed fields, how many of them access exposed fields).

Data Analysis Approach

The analysis of the above software metrics data is descriptive in na-
ture. We used both mathematical (e.g., the Gini coefficient) and several
graphical measures: (i) histograms to reveal the frequency distribution,
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Table 4.1: The Collected Measures.

Field Measures
Name Purpose Relation
Number of Attributes (NOA) Counts all defined fields in a class -
Number of Public Attributes (NOPubA) Counts all public fields in a class NOPubA ⊆ NOA
Number of Protected Attributes (NOProA) Counts all protected fields in a class NOProA ⊆ NOA
Number of Private Attributes (NOPriA) Counts all private fields in a class NOPriA ⊆ NOA
Number of Package Attributes (NODefA) Counts all fields with default or package

visibility in a class
NODefA ⊆ NOA

Number of Exposed Attributes (NOExpA) Counts all fields with non-private visibility
in a class

NOExpA ⊆ NOA

Class Measures
Name Purpose Relation
Number of Classes with At-
tribute(s) (NOCA)

Counts number of classes containing at
least one defined field

-

Number of Classes with Public At-
tribute(s) (NOCPubA)

Counts number of classes with at least
one public field

NOCPubA ⊆ NOCA

Number of Classes with Protected
Attribute(s) (NOCProA)

Counts number of classes with at least
one protected field

NOCProA ⊆ NOCA

Number of Classes with Private At-
tribute(s) (NOCPriA)

Counts number of classes with at least
one Private field

NOCPriA ⊆ NOCA

Number of Classes with Default At-
tribute(s) (NOCDefA)

Counts number of classes with at least
one Default field

NOCDefA ⊆ NOCA

Number of Classes with Inherited
Attribute(s) (NOCIA)

Counts number of classes with at least
one inherited field

NOCIA ⊆ NOCA

Number of Classes with Exposed
Attribute(s) (NOCExpA)

Counts number of classes with at least
one Exposed field

NOCExpA ⊆ NOCA

Number of Classes with Mostly Ex-
posed Attribute(s) (NOCMExpA)

Counts number of classes with Exposed
Fields where more than 50% of Total
Fields (NOA) are Exposed (NOExpA)

NOCMExpA ⊆ NOCExpA

Number of Classes being Indirectly
Accessed (NOCBIA)

Counts number of classes whose fields
are accessed indirectly from other classes

NOCBIA ⊆ NOCA

Number of Classes who Indi-
rectly Access other’s Attribute(s)
(NOCWIA)

Counts number of classes which access
fields defined in other classes

NOCWIA ⊆ NOCA

(ii) box plots to capture summarized views, and (iii) the Lorenz curve to
depict inequality in distributions.

To understand field distribution profiles (i.e., distribution of fields with
different visibility modifiers, and distribution of fields across different
domains - RQ1 and RQ2) in Java-based software systems, we relied on
frequency distribution analysis - a technique used by many researchers
(e.g., [49,207–209,225]) for conducting similar studies. We present the
resulting outcome at both Qualitas Corpus level (using box plots) and
individual system level (using bar plots). Based on the frequency of
different measures regarding various fields (e.g., private fields, public
fields), we answer whether developer practices comply with the recom-
mendations they are provided with.
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To gain an insight into the distribution of field hosting classes (RQ3), we
used an inequality measure (the Gini coefficient). Given a software sys-
tem, its private fields, for example, are treated as wealth and classes1

as populations. We computed the Gini coefficients of fields with differ-
ent visibility modifiers, and summarized them using box plots to yield
an overview of the nature of distribution.
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Figure 4.1: Region of Feature Distribution.

In fact, the Gini coefficient of a particular measure is not always the
same for all systems [217]. The values vary depending on the system’s
specific organization of functionality. To yield an insight into the range
of Gini coefficients of that measure for each of the analyzed software
systems, we plotted the corresponding Lorenz curves for all of them. As
a result, we obtained a pattern like the one depicted in Figure 4.1. We
used this pattern to symbolically indicate any typical bounded region
of functionality distribution or the “decision frame" for the measured
feature [210].

1Fields in interfaces are implicitly public, static and final [94]. As we do not count
static fields, fields in interfaces are excluded.
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Such bounded region can provide us with an indication of consistency
in developers in employing associated functionality (as represented by
the given measure). We can attribute such consistency to an accepted
practice in Java-based software development. To quantify the bounded
region, we computed Inter-Quartile range of the Gini coefficient values
for given measures to identify any typical boundaries of that metric for
the software systems in the Qualitas Corpus.

In addition, to understand whether volume and distribution of fields
are related (RQ4), we used proportion (as representative of volume) and
the Gini coefficient (as representative of distribution) of fields in the
software systems of the Qualitas Corpus. We checked for any linear
relationship between the computed proportions and Gini coefficients.
A negative correlation would imply that developers disperse fields when
volume increases, and vice versa.

To investigate the field exposure profiles (RQ5), we analyzed the fre-
quency distribution of different non-private fields. In addition, we used
a normality test as a secondary check of inequality. For this purpose, we
used the Shapiro-Wilk test for normality [189] to a variety of promising
measures in order to identify possible Gaussian distributions. We ei-
ther accepted or rejected the NULL-hypothesis for normality of selected
measures. Besides, we also built a linear model to identify any relation
between a pair of measures (e.g., classes that host exposed fields and
classes that access those exposed fields).

4.3 Observations

In this section, we present the outcomes of our empirical investigation of
different aspects of the usage patterns of fields in Java-based software
systems. This section is divided into the following subsections: (i) field
distribution (answers RQ1 and RQ2), (ii) field hosting classes (answers
RQ3), (iii) relation between proportion and distribution of fields (answer
RQ4), and (iv) field exposure profiles in Java-based software systems
(answers RQ5).
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Figure 4.2: Boxplot of field distributions by modifier in the Qualitas
Corpus.

4.3.1 Field Distribution

We present the results of our investigation by dividing them into: (i)
distribution of fields with different visibility modifiers, (ii) distribution
of fields across different domains.

Distribution of Fields with Different Visibility Modifiers

Public Fields
The use of public fields is very limited in the software systems in the
Qualitas Corpus (cf. Figure 4.2 and Figure 4.3(a)). They comprise vary-
ing degree of fields. We found 10 software systems (i.e., checkstyle,
displaytag, informa, jFin_DateMath, jmoney, jpf, mvnforum, rssowl,
tapestry, trove) in the Qualitas Corpus that employ no public fields at
all. Among the rest of the software systems, 73% comprise less than
5% public fields (and 61% have only less than 2%).
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The observed proportions of public fields suggest that developers do
not breach the object’s state through public fields significantly. It also
indicates that even when developers expose object state through pub-
lic fields, they do it in few cases only. The underlying reason of such
limited use of public fields can be attributed to a developer tendency in
adhering to available advices (e.g., [12,183]) that discourage the use of
public fields. Following the advices, developers tend to avoid the over-
head associated with public fields. For example, if a class that hosts a
public field changes over time (as a result of software evolution, main-
tenance, etc.), corresponding client classes of that public field may also
require modification. Thus, the use of the public field may result in a
series of changes (aka, ripple effect). Avoiding public fields, developers
assist in minimizing such potential ripple effect - a criterion, required
for software systems to be stable, that should be obtained during design
time [185].

However, though we observed a limited practice of using public fields in
most of the software systems, there are some exceptions. We found 6
software systems in the Qualitas Corpus where the proportion of public
fields is quite high (more than 20%). These are fitjava (75%), jasml
(58%), freecs (34%), antlr (31%), aspectj (26%), and javacc (22%).

Most of the software systems that exhibit high proportion of public fields
are rather small in size. For example, fitjava comprises only 60 classes,
and jasml has only 49 classes. Fitjava is a framework for integrated
testing that supports collaboration among the customers, testers, and
developers. It contains less than 100 fields that are distributed in 54%
of its classes. A formatting (HTML) class alone contains 26% of the
public fields. Jasml is a tool that allows Java class files to be decom-
piled, viewed, and edited through asm-like Java macro instructions. It
has 171 fields that are distributed in 86% of its classes. In jasml, two
data holder classes contribute 30% of the public fields. Freecs is a chat
server that comprises 147 classes only. A server class alone contains
54% of the public fields. However, these software systems are excep-
tions, and may not be taken as a representative example of a developer’s
inclination towards employing high proportions of public fields in Java-
based software systems in general.
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(a) Public Fields
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(b) Protected Fields
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(c) Private Fields

Software Systems - Sorted by Field Count - Ascending - Left to Right

D
ef

au
lt 

Fi
el

ds
 (%

)

0
20

40
60

80
10

0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

(d) Default Fields

Figure 4.3: Field distribution by visibility modifier of the software sys-
tems in the Qualitas Corpus. (X-axis is sorted to indicate the inconsis-
tency between number of total fields and fields with different visibility
modifiers.)

Protected Fields
Like public fields, most of the software systems in Qualitas Corpus
make use of limited protected fields (cf. Figure 4.2 and Figure 4.3(b)).
About 55% of software systems define less than 10% protected fields
(64% of which contain less than 5% only). Some software systems, on
the other hand, comprise a higher proportion of protected fields too.
About 20% of the software systems define more than 20% protected
fields, and some of them contain a substantially large proportion of
protected fields. We found 7 such systems that define more than 50%
protected fields. These are jgraph (87%), nekohtml (67%), colt (63%),
cayenne (63%), drawswf (58%), weka (56%), and webmail (54%).
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Private Fields
Not surprisingly, private fields are used the most (cf. Figure 4.2 and
Figure 4.3(c)). The median value of the proportion of private fields is
74%. We found more than 80% private fields in 40% software sys-
tems in Qualitas Corpus. Some of them (including informa, rssowl,
jpf, tapestry, jfreechart, myfaces_core, displaytag) comprise more than
95% private fields. The highest proportion is observed in checkstyle
(99%). However, these software systems have no public fields at all
except jfreechart and myfaces_core that comprise the least number of
public fields (less than 1%).

While private fields are extensively used in almost all the software sys-
tems in the Qualitas Corpus, only two systems (i.e., fitjava, jgraph)
stand as exceptions. They comprise only less than 5% private fields.
While the developers of fitjava make extensive use of public fields (75%),
the developers of jgraph rely on protected fields substantially (87%).
These cases, however, are not enough to represent common practice,
and hence we confirm that developers usually conceal data by using
the private visibility modifier.

Default Fields
The use of fields with default (package) visibility is also limited (cf. Fig-
ure 4.2 and Figure 4.3(d)). Among the software systems in the Qualitas
Corpus, 82% use less than 20% default fields. There is no default field
in only three systems (i.e., checkstyle, nekohtml, and proguard). We
found, on the other hand, three systems with more than 50% default
fields. These are jmoney, joggplayer, and pooka that have 70%, 71%,
61% of default fields, respectively.

The underlying reason of such high use of default fields can be at-
tributed to the presence of GUI classes. In jmoney, almost 90% of
the fields with package visibility are declared in less than 10% classes
that implement GUI functionality. In joggplayer, less than 10% classes
that provide gui and psychoacoustic setup (e.g., bitrate, stream) func-
tionality comprise more than 50% of the default fields, resulting in a
high inequality in the distribution of fields with package visibility. Like
jmoney and joggplayer, high use of default fields in pooka can also be
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attributed to the GUI classes. We attribute the high degree of default
fields to developer coding style or design choice. We can eliminate GUI
builders, like netbeans, as these tools generally add a visibility modifier
(e.g., private) by default.2

Field Distribution Across Different Domains

Does the use of fields vary across domains (e.g., database, games, mid-
dleware)? To facilitate our understanding on fields usage in different
domains, we investigated the domain-specific proportions of fields with
four visibility modifiers. The varying degree of proportions is depicted
in Figure 4.4.

We observed that the use of public fields is limited in all of the studied
domains. One software system (i.e., fitjava) in the testing domain stands
out. Though this software system comprises 75% of public fields, the
total number of fields in this system are less than a hundred. Two
software systems (freecs, jasml) in the tools domain have public field
proportion of 34% and 58%, respectively. Comparatively, programming
languages make a higher use of public fields than systems in other
domains. However, there are only two examples in Qualitas Corpus
that prevents us from making any general conclusion about the nature
of public fields in Java-based programming language implementations.

The protected fields have comparatively more usage in the parser, dia-
gram, server, and sdk domains. But there are some outliers in several
domains. For example, drawswf in the graphics domain is an outlier,
comprising 58% protected fields. The application jgraph, webmail and
weka in the tools domain employs 87%, 54% and 56% protected fields.
The application cayenne of the middleware domain comprises 63% pro-
tected fields.

While private fields are substantially used in almost all the studied do-
mains, the only exception is the application fitjava of the testing domain
that has very few private fields. Default fields have more usage in the

2We tested this feature with the Netbeans IDE.
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(a) Public Fields
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(b) Protected Fields
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(c) Private Fields
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(d) Default Fields

Figure 4.4: Comparative proportions of different fields in various do-
mains of the software systems in the Qualitas Corpus.

graphics and database domains. The outliers include hsqldb (50%) of
database domain, jmoney (70%) and joggplayer (71%) of tools domain.

However, even though the use of fields varies across different domains,
it is evident that developers tend to comply with the associated recom-
mendations (e.g., [12, 162, 183]) that discourage to use public fields.
Even a possible presence of machine generated code does not over-
shadow this observation (e.g., antlr code contained in checkstyle does
not affect the distribution of public fields). Developers appear to ex-
hibit a domain-agnostic inclination towards information hiding. More
precisely, developers follow recommendations, only rarely do developers
violate the information hiding principle due to specific domain pres-
sures.
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4.3.2 Field Hosting Classes

We studied the extent of fields with different visibility modifiers (i.e.,
public, protected, private, default) in Java-based software systems. But
it does not inform us to what extent the classes comprise fields. In this
section, we describe the results of our investigation on the distribu-
tion of field hosting classes. We present the resulting outcomes under
two different facets: (i) Extent of concentration of fields across different
classes, (ii) Distribution of field hosting classes in software systems of
Qualitas Corpus.
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Figure 4.5: Boxplot of Gini Coefficient of Field Measures of the soft-
ware systems in the Qualitas Corpus.

Extent of Concentration of Fields across Different Classes

The results (depicted in Figure 4.5) show that the Gini coefficients of
various field measures are very high. A high value of the Gini coefficient
for a given measure implies concentrated distribution of the measured
entity. Therefore, the above findings indicate that fields with different
visibility modifiers are highly concentrated in the studied software sys-
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tems. This suggests that developers prefer to centralize data storage (as
represented by fields) in typical Java-based software systems.

Based on our data set, we can empirically quantify the width of a such
bounded region and determine typical min and max values for each
measure by using the interquartile range (IQR). Q1 and Q3, the lower
and upper quartile, capture 50% of the data and yield a good estimate
for the width of the bounded region. For example, we can establish the
width of the typical region of Number of Attributes by taking Q1 = 0.707
and Q3 = 0.796 as [0.707, 0.796] with width 0.089. This interquartile range
(IQR) indicates that developers usually concentrate fields distribution.
We observed that fields with public, protected and default visibility
modifiers are highly concentrated. Whenever they are used, develop-
ers keep them centralized in only a few classes (cf. Figure 4.6). On the
other hand, fields with private visibility modifier are comparatively dis-
persed (cf. Figure 4.6(c)) across different classes in Java-based software
systems.

There are, however, a few outliers (e.g., trove, jparse and jrat) that show
comparatively more equal distribution of fields. For example, trove -
a lightweight implementation of the Java collections API, exhibits the
least concentration of fields (Gini coefficient = 0.393). A closer look
at trove revealed that it comprises wrapper-like classes that implement
each functionality independently, causing fields to occur in every cor-
responding class. As a result, a more equal distribution of fields is
observed in trove.

To quantify the range of distribution of different fields, we recorded their
Gini coefficients (cf. Table 4.2), and computed their interquartile range
(IQR). We found that the IQR-width of private fields is substantially
wider than the non-private ones. On the other hand, the IQR-width
of public fields is the least one. Thus, the IQR-widths of different field
distributions in the software systems of the Qualitas Corpus exhibit
a relation like IQR-width (private fields) > IQR-width (protected fields) >
IQR-width (package fields) > IQR-width (public fields).
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(a) Distribution Pattern of Public
Fields
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(b) Distribution Pattern of Protected
Fields
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(c) Distribution Pattern of Private-
Fields
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(d) Distribution Pattern of Default-
Fields

Figure 4.6: Distribution patterns of fields with different visibilities - It
suggests that the private fields have wider distribution than the fields
with other three visibilities

Measure Range IQR-Interval IQR-Width
Number of Public Attributes [0.674− 0.998] [0.974, 0.994] 0.020
Number of Protected Attributes [0.815− 0.998] [0.945, 0.999] 0.054
Number of Private Attributes [0.437− 0.983] [0.774, 0.862] 0.088
Number of Package Attributes [0.799− 0.997] [0.934, 0.983] 0.049

Table 4.2: Narrow bounded region of fields with different modifiers.

Given such high concentration of non-private fields, does this observa-
tion hold for large software systems like eclipse and netbeans? To an-
swer this question, we investigated their field distribution profiles (cf.
Figure 4.7). We observed that both eclipse and netbeans share almost
the same distribution profile, which suggests that even in the large soft-
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(a) Field Distribution in Eclipse.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

% Population (Classes)

%
 M

ea
su

re
s

Gini (PubA) = 0.9951

Gini (ProA) = 0.9896

Gini (PriA) = 0.8377

Gini (DefA) = 0.9717

Gini (PubA) = 0.9951

Gini (ProA) = 0.9896

Gini (PriA) = 0.8377

Gini (DefA) = 0.9717

Gini (PubA) = 0.9951

Gini (ProA) = 0.9896

Gini (PriA) = 0.8377

Gini (DefA) = 0.9717

(b) Field Distribution in Netbeans.

Figure 4.7: Field Distribution in two large software systems : Eclipse
and Netbeans

ware systems (comprising more than 30,000 classes), private fields are
dispersed comparatively more than non-private ones (i.e., public, pro-
tected and default) that are, in general, highly concentrated. In addi-
tion, the Gini coefficients of different type of fields (e.g., public, private)
in both eclipse and netbeans fall within the IQR of respective fields as
recorded in Table 4.2.

Distribution of Field Hosting Classes

Though the distribution profile of fields provides us with insights into
the extent of concentration of fields, that profile does not reveal a system-
specific proportion of field hosting classes (NOCA). We do not know yet
which software system has a higher proportion of field hosting classes.

Our inspection revealed that the profile of proportions of field hosting
classes in the software systems in Qualitas Corpus follows a normal
distribution with the mean value 48% (cf. Figure 4.8). Though this sug-
gests that our experimental data set is composed of a diverse collection
of software systems that includes fields hosting classes with varying
proportions, the profile indicates that the proportion of field hosting
classes lies within 40% to 60% in most of the software systems. But
what is the decomposition of field hosting classes at the level of different
visibility modifiers (i.e.. public, protected, private, and default)?
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Figure 4.8: Distribution of classes comprising fields in the software
systems of the Qualitas Corpus.
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(a) Public Field Hosting Classes
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(b) Protected Field Hosting Classes
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(c) Private Field Hosting Classes
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(d) Default Field Hosting Classes

Figure 4.9: Classes with different types of fields in the software sys-
tems of the Qualitas Corpus.
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As depicted in Figure 4.9, we observed that non-private fields host-
ing classes (i.e., NOCPubA, NOCProA, NOCDefA) are less than 20% in
most of the software systems. On the other hand, private fields hosting
classes (i.e., NOCPriA) is mostly above 70%. This finding further con-
firms that when developers define non-private fields, they keep them
confined in only a few classes.
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Figure 4.10: Classes with Inherited Fields in Qualitas Corpus

In addition to hosting fields, a class may also inherit fields from their
ancestor(s). To what extent do classes inherit fields? We found that
classes that inherit fields (NOCIA) make up only a small proportion
when compared to classes that defined fields. We found that the pro-
portion of such classes ranges between 10% to 30% (cf. Figure 4.10)
in most of the software systems. This indicates that developers usually
define fields comparatively more than inheriting them from ancestors.

4.3.3 Relation between Volume and Distribution of Fie-
lds

The proportion of fields is inversely related to their concentration re-
gardless the visibility modifier (cf. Figure 4.11). It implies that the
more fields a software system comprises, the more they are dispersed.
Among four types of visibility, the dispersion of non-private fields with
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Figure4.11:Fieldproportionvs.Ginicoefficient.

respecttotheirproportionvarieslittlewithinashortinterval(i.e.,Gini

coefficientrangesfrom0.7to1).Thisisbecausetheyarerelativelyfew

innumberandalsokepthighlyconcentratedinafewnumberofclasses.

Evenincaseofmorenon-privatefields,theconcentrationdoesnotvary

substantially.

Thedispersionrangeofprivatefields,ontheotherhand,isabitwider

(i.e.,Ginicoefficientrangesfrom0.4to1).Thissuggeststhattheprivate

fieldsaredispersedcomparatively moreastheirproportionincreases.

But,whydothedevelopersorganizethesolutionsbydispersingthe

privatefields?
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The reason of such dispersion of private fields can be attributed to the
adaptation with increased complexity as stated by Lehman’s second
law [129]. According to this law, additional work is necessary for re-
ducing the complexity that arises from software evolution. Though the
domains are different, we argue that this complexity can also originate
from a variety of sources (like solution design pattern, the way devel-
opers organize desired functionality and implement them, etc.). The
necessity to cope with complexity, regardless where it originates from,
can effect developer preferences and decision making. This coping with
complexity can have two aspects: the complexity of the software sys-
tems being developed and the cognitive load3 on developers. Both as-
pects require proper attention in order to structure a successful devel-
opment and evolution of a software system [217].

Cognitive load is dependent on element interactivity [203]. When the
interactions among different elements are required to be learned, the
corresponding cognitive load becomes higher. It can be minimized by
learning them successively rather than simultaneously when individual
elements do not interact with each other. Based on this, we argue that
large classes that comprise a wide variety of functionalities result in
high volume of interaction among them. This, in turn, imposes high
cognitive load on developers. To reduce the cognitive load of managing
such large classes, developers distribute solutions design into different
smaller and manageable classes instead of organizing them all together
in God-like classes. As a result of such dispersing approach, fields that
capture the state of a desired object are distributed across different
classes, and this leads to the concentration of fields to be reduced as
their proportion rises.

The limitation imposed by the human working memory is another po-
tential reason for such dispersion. Working memory is limited in terms
of storage, duration, and processing capacity [27, 167]. According to
Cowan [63], working memory can process only 4 ± 1 elements. This
may explain the dispersion of fields as their proportion increases.

3Total amount of mental activity imposed on human memory.
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4.3.4 Field Exposure

An exposed field is a field that has any non-private visibilities (i.e., pub-
lic, protected, and default visibility) [207]. In this section, we describe
(i) the volume of exposed fields, (ii) the degree of exposed field hosting
classes, and (iii) the relation between exposed fields hosting classes and
exposed fields accessing classes.
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(b) Exposed Fields vs. System Size

Figure 4.12: Exposed Fields Distribution

Volume of Exposed Fields

To gain an insight into the volume of exposed fields used in Java-based
software systems, we inspected their proportions in the total instance
fields space. Our investigation revealed that the use of exposed fields
varies across a wide range (cf. Figure 4.12(a)). But the use of ex-
posed fields in a software system does not depend on its size (cf. Fig-
ure 4.12(b)). We observed that software systems sharing almost the
same size within the range of 50 to 4,000 classes comprise varying pro-
portions (almost 1 to 99%) of exposed fields. But what are the systems
that employ such extensively high (or low) proportions of exposed fields?

Our investigation revealed that while 10 software systems in the Qual-
itas Corpus employ less than 5% exposed fields, 10 other software sys-
tems employ more than 80% exposed fields. Table 4.3 lists these soft-
ware systems.
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System Exposed Fields (%) System Exposed Fields (%)
checkstyle 0.60 joggplayer 80.13
informa 2.13 jung 80.24
rssowl 2.21 jmoney 81.39
jpf 2.96 jasml 81.87
tapestry 3.17 nekohtml 82.83
jfreechart 3.63 antlr 89.51
myfaces_core 4.48 jgraph 96.64
displaytag 4.80 fitjava 98.99

Table 4.3: Software Systems with less than 5% and more than 80%
exposed fields

Degree of Exposed Field Hosting Classes

While the proportions of exposed fields in Java-based software systems
ranges from 1 to 99% (approx.), what is the typical profile of classes
that host exposed fields? Do the developer design choices confine them
in a few classes or do they disperse exposed fields in almost every field
hosting classes? To answer these questions, we studied the classes that
host at least one exposed field (NOCExpA).
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Figure 4.13: Proportion of Exposed Field Containing Classes

We found that a varying range of proportions of classes host exposed
fields in almost all the studied software systems. While Figure 4.13
depicts an overview of the extent of classes that comprise the exposed
fields, Table 4.4 shows the software systems that employ less than 10%
exposed field hosting classes and also more than 80% exposed field
hosting classes (NOCExpA).
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System NOCExpA/NOCA(%) System NOCExpA/NOCA (%)
checkstyle 1.70 jgraphpad 83.04
informa 4.23 pooka 86.05
rssowl 5.34 jung 87.02
tapestry 5.94 colt 88.24
castor 6.05 webmail 89.29
jfreechart 7.01 antlr 90.69
picocontainer 9.35 jgraph 94.74
junit 9.76 jasml 95.24
argouml 9.79 fitjava 96.77
nakedobjects 9.82 - -

Table 4.4: Software Systems with less than 10% and more than 80%
exposed field containing classes (NOCExpA) (Proportion is based on
only the classes that host fields).

We observed less than 10% exposed field hosting classes (NOCExpA) in
some software systems as a result of only few exposed fields in them.
Such classes contain more than 90% private fields. Therefore, the re-
maining exposed fields are distributed in few number of classes. On
the other hand, software systems that employ more than 80% exposed
fields hosting classes (NOCExpA) use an extensive amount (more than
70%) of exposed fields. The only exception is jgraphpad that defines
56% exposed fields.

Thus, it appears that a limited proportion of exposed fields are confined
in few number of classes. This finding leads to a question: do devel-
opers define exposed fields in specially designated classes? If the ex-
posed field hosting classes (NOCExpA) are dominated by exposed fields
(NOExpA), then it would indicate that when developers define exposed
fields, they tend to define them in classes that usually do not host much
private fields.

To answer the above question, we studied the extent of exposed fields
(NOExpA) in their host classes (NOCExpA). For this purpose, we inves-
tigated exposed field hosting classes where more than 50% of the total
fields are exposed. The resulting findings (cf. Figure 4.14(a)) indicate
that a substantial proportions of NOCExpA are dominated by exposed
fields. This means developers tend to expose fields in specially desig-
nated classes. In most of the cases, such classes only comprise a single
exposed fields (cf. Figure 4.14(b)).
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Figure 4.14: Distribution of classes comprising exposed fields for the
QC data (a) Exposed Field Hosting Classes where more than 50% Fields
are Exposed, (b) Exposed Field Hosting Classes (where the shaded pro-
portion indicates NOCExpA = 1, and the rest implies NOCExpA > 1)

We found a linear relationship between the proportion of exposed fields,
and proportion of exposed field hosting classes (cf. Figure 4.15). Though
our computation is based on only the classes that host exposed fields,
our finding confirms that the more exposed fields are employed in a
software systems, the developers design choice (deliberate or acciden-
tal) causes more classes to share those exposed fields.
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Figure 4.15: Relation between Exposed Fields and Their Hosting
Classes (a) Considering All Classes (b) Considering only the Field Host-
ing Classes in the Software Systems of Qualitas Corpus
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Relation between Exposed Fields Hosting Classes and Exposed Fields
Accessing Classes

We also studied exposed fields hosting classes (NOCExpA) and exposed
fields accessing classes (NOCWIA) to identify any potential relationship
that captures the intention of developers regarding field exposure (i.e.,
why do they expose fields). The reasons could be twofold: lack of con-
scious design decision or there exists an intention to use them.

In a recent study, Tempero [207] stipulated that non-private fields may
be a result of accidents (or oversights) rather than conscious design
decisions as the studied systems do not take advantage of non-private
fields. While this finding represents system level scenario, changing
the viewpoint could result in a different observation. This is because
a particular aspect of software systems may not be visible due to not
choosing the right level of granularity [172]. We argue that observations
are not always viewpoint agnostic.

In a recent paper on ecological aspect of empirical software engineering,
Posnett et al. [172] emphasize on selecting the right level of granularity.
While an observation can be true at one level (e.g., system level), it might
exhibit a different scenario at a different level (e.g., entire population
level). The characteristics portrayed on an entire population may not
be mapped to each constituent systems.

According to Parsons and Wand [164], things can be combined to form a
composite thing. A property of a composite that is not possessed by any
of its components is called an “emergent property”. This is an inherent
property of the composite thing, and this property is not localized to
any component system. For example, reliability of a software system is
considered as an attribute of the overall system, though it can depend
on the individual components and the relationship among them.

Emergent properties can be divided into two types: functional and non
functional [198]. While the former appears when the system is assem-
bled as a whole by integrating all the constituent components, the later
is related to the behavior of the system in its operational environment.
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Emergent properties of complex software systems can be revealed at var-
ious levels of granularity. For example, Valverde et al. [211] investigated
a large collection of object-oriented software systems to uncover any
emergent properties at the system level. They discovered small-world
like networks (i.e., the average distance between any pair of classes is
very small) in object oriented software systems.

In order for an emergent property to materialize, a proper level of gran-
ularity is required to be applied. We consider the entire population as
system of systems to uncover any emergent properties related to the
field exposure. In particular, we shifted our view point from system
level to entire population level to discover any patterns of relationship
between the classes comprising exposed fields and the classes access-
ing them.
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Figure 4.16: Both the Number of classes whose fields are being
accessed indirectly from other classes (NOCBIA), and the Number of
classes which access fields defined in other classes (NOCWIA) follow
the normal distribution after log transformation.

We found that both the distribution profile of Number of classes whose
fields are accessed indirectly from other classes (NOCBIA), and the Num-
ber of classes which access fields defined in other classes(NOCWIA) fol-
low the normal distribution after log transformation (cf. Figure 4.16).
Though the existence of any one to one mapping between these two
distributions is yet unknown, we argue that the two measures (i.e.,
NOCBIA and NOCWIA) are related as they follow the same distribution
pattern.
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Figure 4.17: (a) Relation between Number of classes containing at
least one exposed field (NOCExpA) and Number of classes whose fields
are being accessed indirectly from other classes (NOCBIA). (b) Relation
between Number of classes containing at least one exposed field (NO-
CExpA) and Number of classes which access fields defined in other
classes (NOCWIA).

In addition, the above two measures (i.e., NOCBIA and NOCWIA) are
exponentially related to the Number of classes containing at least one
exposed field (NOCExpA) (cf. Figure 4.17). This is an emergent property
observed at the entire population level, not necessarily visible at the
system level.

4.4 Summary

In this chapter, we studied how developers use fields in Java-based
software systems. In particular, we investigated developer tendencies in
adhering to the data hiding principle [162] and availablle advices (e.g.,
[12, 183]) regarding the use of fields. Moreover, we studied associated
design choices including organization of data storage (as represented by
fields) across different classes, and data exposure profiles (as indicated
by fields with non-private visibility modifiers).
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We observed the following:

• Developers tend to follow advices regarding limiting the use of non-
private fields (e.g., all data should be hidden within its class [183],
don’t expose state if you don’t have to [12]). This observation is evi-
dent in two levels of granularities: the entire collection of software
systems in Qualitas Corpus, and also across constituent domains
(which suggests that developers of any particular domain also ad-
here to advices).

• Developers do not define fields in all classes. We found fields in 40
to 60% of the classes in most of the software systems of Qualitas
Corpus. Apart from this, about 10% to 30% of the classes in most
of the software systems comprise inherited fields.

• Developer design choices are centralized in terms of data storage
(as represented by fields) in typical Java-based software systems.
When developers expose fields, they confine them in a few classes.
The Gini coefficient of such fields is above 0.9 in more than 80%
software systems in the Qualitas Corpus.

• The dispersion of fields is related to their proportion. This indi-
cates that developers do not tend to create God-like classes (in
terms of fields), rather they usually work with smaller and man-
ageable classes. One underlying reason may be an increased cog-
nitive load associated with managing classes with high field count.

• Exposed field hosting classes are mostly exposed field dominated.
When developer define exposed fields in a class, they tend to limit
the private fields in that class.

• We established a relation between exposed fields and their usage.
The distribution profile of both the number of classes whose fields
are accessed, and who access those fields follow a normal dis-
tribution (after log transformation) at entire population level (i.e.,
not at the level of each software system, rather their collection as a
whole). Given the absence of a one to one mapping between these
two distributions, it is still evident that both follow the same pat-
tern. We found both the classes whose fields are accessed, and
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classes who accesses fields of other classes indirectly is an expo-
nential function of the classes with exposed fields. This reinforces
our observation that the exposure of fields is somewhat deliberate
(as exposed fields are being accessed to some extent) and some-
what accidental.
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Property Analysis

In this chapter, we focus on investigating developer behavior in using
the property mechanism in Java. To begin, we set the stage for studying
the property mechanism and identify a set of specific research ques-
tions. We then describe the analysis method in section 5.2. This sec-
tion presents a set of definitions that capture different usage patterns of
properties practiced by developers, a corresponding set of software met-
rics, and the description of our metrics analysis approach. We present
the results of our investigation as observations in section 5.3. Finally,
we summarize the key findings of this chapter in section 5.4.

5.1 Introduction

In the previous chapter, we studied the use of fields along with different
visibility modifiers that allow us to fabricate controlled access to an
object’s internal state, and thus assist us to ensure data encapsulation.
However, there is another dimension of data encapsulation that we also
need to consider – getters and setters – designated member functions
to access and manipulate the state of objects. Getters and setters (aka,
accessor and mutator, respectively) are collectively called properties and
have been popularized in the 1990s, when they were introduced as a
new linguistic element to Borland’s Delphi object model [48]. Though
possible, the purpose of getter and setter methods is not to circumvent
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the visibility modifiers, in particular private, but to provide a means
to effectively convey the intent of code while at the same time giving
developers the tools to retain the level of protection generally associated
with information hiding.

Though many object-oriented programming languages (e.g, C#, Object
Pascal) provide built-in support for the property mechanism, the Java
programming language lacks it [26]. As a result, Java developers are re-
quired to fabricate the property model. While accomplishing this task,
they are expected to adhere to a coding convention [10] or architectural
style [191] that comprises well defined guiding principles for this pur-
pose (e.g., prefixing a field name with get and set while defining getter
and setter methods).

While the conventions prescribe how one should define getter and set-
ter methods, there is a considerable amount of advices available that
suggest whether one should use them or not. For example, Reil [183]
encourages to change the state of an object through its public interface
(i.e., getter and setter methods). On the other hand, many emphasize
to avoid them whenever possible. For example, Holub [105] considers
them as evil as they violate the encapsulation principle. Similar opinion
is also expressed by Eby [69] and Jorgensen [114].1

One basis of such an opinion is that a well-encapsulated class should
not expose its internals through getter and setter methods. Such expo-
sure is often considered as an indication of lack of good object-oriented
design [114]. Moreover, such exposure is blamed for not only violating
encapsulation, but also incurring difficulty in software maintenance
[105,106]. In particular, when getter and setter methods are used only
to access or mutate a field, the field becomes exposed like being a public
one. There is not much difference between such use of getter and setter
methods and a public field - both violate the encapsulation principle.
Yet, the use of getter and setter methods may offer some advantages
when compared to public fields. For example, changes in an object’s

1These opinions are published on several websites. Though websites may not be
the most reliable sources of advice, they represent at least the viewpoint of well-
experienced developers in this case.
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internal implementation may result in the field to change, and thus al-
low the client code that rely on associated getter and setter methods to
remain unaffected.

But, in a statically typed language like Java, there is still room for prob-
lems: a change in the type of a field may cause the client code to break.
For example, altering the type of an instance field Color from Int to
String demands change in associated getter and setter methods (if any),
and thus enforces changes in the corresponding client code (e.g., de-
pendent classes). A dynamically typed language, however, does not suf-
fer from such a problem. For example, Python [214] offers properties to
control access to instance variables. In Python, the interface for access-
ing a variable that is public and a variable whose access is controlled
by properties is the same. As a result, a client’s code may remain un-
affected when an object’s internal implementation changes.

However, getter and setter methods may not simply be used to access
and modify associated fields. As Java allows flexibility to define getter
and setter methods by supporting them through conventions, in addi-
tion to merely getting and setting a field, developers may choose to in-
corporate more functionality (e.g., implementation of additional domain
logic, lazy initialization, logging) in getter and setter methods. Though
possible in Java (unlike C#), such usage of getter and setter methods
somewhat mismatches with their primary purpose.

Thus, programming language-specific idioms may govern the use of
properties. Coding conventions like Java’s naming pattern for getter
and setter methods can give rise to a systematic bias towards the way
developers formulate solution design [140]. They may either ease or
make difficult the way developers express intent in software. In ad-
dition, the available advices regarding the use of properties can affect
developer preferences, and thus may influence them towards particular
design choices. But how do the developers actually use them? In this
chapter, our focus is on understanding developer practices in using the
property mechanism in Java.
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In particular, we address the following research questions:

• RQ6: What is the typical distribution profile of properties in Java-
based software systems? Do developers adhere to the Java-specific
coding conventions and associated guidelines while formulating
solutions using getter and setter methods?

• RQ7: Is there any impact of the underlying problem domain on
the use of getter and setter methods?

• RQ8: Do developers define getter and setter methods when they
define private fields?

• RQ9: What is the distribution of ratio of getter and setter methods?

5.2 Analysis Method

To facilitate our analysis, we classify getter and setter methods into 12
different types that capture their different variants (cf. Figure 5.1).
We then define a set of software metrics that capture these definitions
and analyze the defined metrics with different measures (e.g., the Gini
coefficient). In this section, we present (i) definitions of variants of getter
and setter methods, (ii) definitions of correspondingmetrics, and (iii) the
data analysis approach used.
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5.2.1 Definitions

Getters

A unique method whose name starts with the prefix “get". The Java
code of an example of getter methods is given below.

public String getName()

{

//more code(optional) - pre-condition

return fName;

}

The bytecode sequence of a getter method can have a variety of patterns,
depending on the purpose the getter is used for. For example, while a
getter method can be used only to access a particular field, it can also
apply additional computations to the retrieved field.

Setters

A unique method whose name starts with the prefix “set". The Java
code of an example of setter methods is given below.

public void setName (String aName)

{

//more code(optional) - pre-condition

fName = aName;

//more code(optional) - post-condition

}

Like getter methods, the bytecode sequence of a setter method can as-
sume different patterns, depending on its purpose. For example, while
a setter method can be used only to modify a field, it can also be used
to implement different functionalities before and after2 setting the as-
sociated field.

2A bound setter, for example, notifies listeners when its value changes [21].
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Pure Getters

A getter method that is used to access the target field only. We call it
pure as it does not offer any additional functionality rather than pro-
viding access to the target field. It is the simplest form of all the getter
methods. An example of pure getter methods is given below.

public String getName()

{

return fName;

}

The bytecode representation of pure getters is presented below.

0: aload_0

1: getfield #2; //Field fName:Ljava/lang/String;

4: [ i | l | f | d | a] return

Pure Setters

A setter method that is used to modify the target field only. We call it
pure as it does not offer any additional functionality rather than pro-
viding modifying the target field. It is the simplest form of all the setter
methods. An example of such pure setter methods is given below.

public void setName (String aName)

{

fName = aName;

}

The bytecode representation of pure setters is presented below.

0: aload_0

1: aload_1

2: putfield #2; //Field fName:Ljava/lang/String;

5: return
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Real Getters

A getter method that is used to access the target field of its host class.
In addition to providing access to the desired field, this type of getter
method can offer additional computations, if necessary. An example of
real getter methods is given below.

public String getName()

{

//more code(optional) - pre-condition

return fName;

}

Both the getter - getName() and the field - fName are defined in the same
class (i.e., the getter accesses the host class’s field).

Real Setters

A setter method that is used to modify the target field of its host class.
Like a real getter, the real setter method can also employ some additional
processing before modifying the field. An example of real setter methods
is given below.

public void setName (String aName)

{

//more code(optional) - pre-condition

fName = aName;

//more code(optional) - post-condition

}

Both the setter - setName() and the field - fName are defined in the same
class (i.e., the setter modifies the host class’s field).
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Virtual Getters

A getter method that is used to access the target field that is defined
outside of its host class. In addition to providing access to the desired
field, this type of getter method can offer additional computations, if
necessary. An example of virtual getter methods is given below.

public String getName()

{

// code retrieving information associated with an actual

// (not defined in the host class) or emulated field.

}

Virtual Setters

A setter method that is used to modify the target field that is defined
outside of its host class. Like a virtual getter, the virtual setter method
can also employ some additional processing before modifying the field.
An example of virtual setter methods is given below.

public void setName (String aName)

{

// code updating information associated with an actual

// (not defined in the host class) or emulated field.

}

Predicates

Predicate can be viewed as a special purpose getter function that re-
turns a Boolean value. In other words, rather than returning the asso-
ciated field value, a predicate tests for a specific object state associated
with one or more fields. To assess the relation of this type of state ac-
cess with respect to other getter variants, we included this type in our
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study, even though predicates are rather function than properties. An
example of Boolean predicates is given below.

public boolean isEven()

{

return (fNumber % 2) == 0;

}

The predicate - isEven() checks whether the field fNumber is even or
not, and return a Boolean result.

Non-Boolean Predicates

A predicate that returns a non-boolean value is called a non-boolean
predicate. An example of such predicates is given below.

public int isEven()

{

if (fNumber % 2) == 0)

return 1;

else

return 2;

}

The predicate - isEven() checks whether the field fNumber is even or
not, and returns a non-boolean result.

Getter-Like Methods

Often a method is providing the functionality of a getter method, though
its name does not reflect it. That is, the method name is not prefixed
with get, but it does the same job as a getter does. We call them getter-
like methods. We identified this type of method by comparing their com-
piled image with that of a pure getter. We restricted our scope to getter-
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like methods that have three instructions only, though there might be
even more of them. An example of getter-like methods is given below.

public String myMethod()

{

return fName;

}

The byte code representation of getter-like methods is presented below.

0: aload_0

1: getfield #2; //Field fName:Ljava/lang/String;

4: [ i | l | f | d | a] return

Setter-Like Methods

Like the getter-like methods, there are methods that do the same job as
a setter, but their names do not reveal it (i.e., the name of the method
does not start with set ). The compiled image of such method is same
as that of a pure setter. Though there might be even more of them,
we counted setter-like methods that contain four instruction only. An
example of setter-like methods is given below.

public void yourMethod (String aName)

{

fName = aName;

}

The bytecode representation of setter-like methods is presented below.

0: aload_0

1: aload_1

2: putfield #2; //Field fName:Ljava/lang/String;

5: return
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5.2.2 Definitions of Metrics

To facilitate analysis of the property mechanism, we mapped the above
definitions to a set of software metrics. As getter and setter methods
are one type of special purpose methods, we included a set of methods
measures in our analysis. One resulting benefit of including methods
is that we can conduct comparative analysis of methods, and getter
and setter methods to reason about their distribution patterns in Java-
based software systems. Table 5.1 presents our rationale.

Table 5.1: Rationale for the Selected Key Measures

Name Rationale Description
Getters/Setters Data Access/Modify Stored data retrieval/modififcation

Methods
Data Consumption/Production Stored data consumed/New data produced
Decomposition Breadth of functional decomposition

The key focus of the method and property measures is depicted in Fig-
ure 5.2. The methodmeasures are concerned with revealing functional-
ity decomposition patterns (in terms of total number of methods defined
in a class) with 4 different visibilities modifiers (i.e., public, protected,
private, and default).

The property measures focus on capturing different variants of get-
ter and setter methods, mainly covered under four different facets de-
scribed below:

• Number of Getters, the total number of getter methods in a class,
and its semantic variants Number of Real Getters, Number of Virtual
Getters, and Number of Pure Getters to record specific field access
idioms,

• Number of Setters, the total number of setter methods in a class,
and its semantic variants Number of Real Setters, Number of Virtual
Setters, and Number of Pure Setters to count specific field update
idioms,
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Measures and Their Key Focuses 
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Figure 5.2: Measures and Their Key Focuses

• Number of Boolean Predicates and Number of Non-Boolean Predi-
cates, the total number of predicates in a class, and

• Number of Pure Getter-like Methods and Number of Pure Setter-like
Methods methods that behave like “get"- and “set"-methods but do
not follow the prescribed naming convention.

The exact definitions of the corresponding software metrics are shown
in Table 5.2. In this table, we defined a set of 15 different software
metrics and their relations. The metrics set comprises of 5 method
measures and 12 property measures.

5.2.3 Data Analysis Approach

Our analysis of the above software metrics data is descriptive in na-
ture. We use the measures (e.g., the Gini coefficient, bounded region of
functionality distribution as represented by a series of Lorenz curves)
presented in the previous chapter. In addition, we conduct a frequency
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Table 5.2: The collected method and property measures.

Method Measures
Name Purpose Relation
Number of Methods (NOM) Counts all defined member methods in a

class
-

Number of Public Methods (NOPubM) Counts all public methods in a class NOPubM ⊆ NOM
Number of Protected Methods (NOProM) Counts all protected methods in a class NOProM ⊆ NOM
Number of Private Methods (NOPriA) Counts all private methods in a class NOPriM ⊆ NOM
Number of Package Methods (NODefM) Counts all methods with default or pack-

age visibility in a class
NODefM ⊆ NOM

Property Measures
Name Purpose Relation

Number of Getters (NOG)
Counts all member functions in a class,
whose name starts with the prefix “get" NOG ⊆ NOM

Number of Setters (NOS)
Counts all member functions in a class,
whose name starts with the prefix “set" NOS ⊆ NOM

Number of Real Getters (NORG) Counts all getter methods that access a
field defined in the host class

NORG ⊆ NOG

Number of Virtual Getters (NOVG)
Counts all getter methods that access a
field defined outside in the host class NOVG ⊆ NOG

Number of Pure Getters (NOPG)
Counts all getter methods with
3-instruction sequence aload_0,
getfield, and [i|l|f|d|a]return

NOPG ⊆ NOG

Number of Real Setters (NORS) Counts all setter methods that alter a
field defined in the host class

NORS ⊆ NOS

Number of Virtual Setters (NOVS)
Counts all setter methods that alter a
field defined outside in the host class NOVG ⊆ NOS

Number of Pure Setters (NOPS)
Counts all setter methods with
4-instruction sequence aload_0,
aload_1, putfield, and return

NOPS ⊆ NOS

Number of Boolean Predicates (NOBP)
Counts all methods that start with prefix
“is” and return a boolean value NOBP ⊆ NOM

Number of Non-Boolean Predicates (NONBP)
Counts all methods that start with prefix
“is” and return a non-boolean value NONBP ⊆ NOM

Number of Pure Getter-like Methods (NOGLM)
Counts all methods that act like pure
getters (i.e., have 3 instructions), but
whose method names is not prefixed
with “get"

NOGLM ⊆ NOM

Number of Pure Setter-like Methods (NOSLM)
Counts all methods that act like pure
setters (i.e., have 4 instructions), but
whose method names is not prefixed
with “set"

NOGLM ⊆ NOM

histogram-based analysis. Moreover, we use Spearman’s rank correla-
tion coefficient to check for any correlation between a pair of software
metrics (e.g., private fields, and getter methods).

5.3 Observations

In this section, we present the outcomes of our empirical investigation of
the usage patterns the property mechanism in the Java programming
language. This section is divided into (i) overall metrics distribution
profiles, (ii) proportion of getter and setter methods, (iii) relation between
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private fields and getter and setter methods, and (iii) ratio of getter and
setter methods.

5.3.1 Overall Metrics Distribution Profile

How do developers use the variants of the property mechanism? Do
developer practices cause certain classes to encapsulate most of the
functionalities? To answer these questions, we studied the distribution
patterns of various software metrics and computed their Gini coeffi-
cients.
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Figure 5.3: Boxplot of all the counted measures.

The range of Gini coefficients of each measure is depicted, in terms of
box plots, in Figure 5.3. The box plots indicate that the Gini coeffi-
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cients are very high, and bounded within a narrow range. Such narrow
boundaries of the Gini coefficients indicate a certain consistency among
the developers in employing the property mechanism available in Java.
This finding also implies that the associated distribution preferences
may not be a factor of the underlying problem domain (as most of the
software systems in Qualitas Corpus, belonging to a variety of domains,
show similar patterns of distribution).

Measure IQR - Interval IQR - Width
Number of Methods [0.644, 0.712] 0.068

Number of Getters [0.783, 0.868] 0.085

Number of Setters [0.877, 0.945] 0.068

Table 5.3: Width of bounded regions of key measures.

To identify the typical region of property metrics distribution, we plot-
ted their corresponding Lorenz curves in a similar fashion described in
previous chapter (cf. Section 4.2). Figure 5.4 depicts the results. The
intervals of the IQRs of the key measures, presented in Table 5.3, sug-
gest that developers are consistent in organizing their solutions when
using getter and setter methods. For all intents and purposes, the IQR
width is very small. Developers appear to control their solution designs
within very narrow margins. We observed, however, higher concentra-
tion of getter and setter methods. Also, the variability is much greater
than those of fields (cf. Table 4.2).

Methods

The distribution of methods is the least concentrated one among all the
metrics (cf. Figure 5.3). Interestingly, public methods follow almost the
same distribution pattern (cf. Figure 5.4(a) and Figure 5.4(b)). On the
other hand, methods with non-public visibility modifiers (i.e., protected,
private, and default) are highly concentrated (the Gini coefficients are
greater than 0.9 in most of the cases). This indicates that developers
define them in very few classes.
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(a) Distribution Pattern of Methods
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(b) Distribution Pattern of Public
Methods
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(c) Distribution Pattern of Getters
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(d) Distribution Pattern of Setters

Figure 5.4: Distribution patterns of selected key metrics - It suggests
that the distributions lie within narrow and bounded regions.

The Gini coefficients for methods range from 0.42 (i.e., jparse) to 0.92
(i.e., colt). The interquartile range (IQR) is 0.64 to 0.71 (with a median
value of 0.67). The mean value is 0.68 which is slightly higher than
the one observed by Vasa et al. [217]. The underlying reasons can be
attributed to the associated data sets in the two studies. While Vasa et
al. [217] investigated various releases of only 40 software systems from
an evolution perspective, our data set (i.e., Qualitas Corpus) comprises
106 different software systems from 12 major domains (e.g., database,
middleware). It may be the diversity in the data sets that influenced
the result. As several releases of a particular software system are less
likely to induce significant diversity, we consider the data set used in
the study of Vasa et al. [217] is less diverse than the Qualitas Corpus.
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Getter and Setter Methods

The Gini coefficients for getter methods range from 0.46 (i.e., jparse) to
0.98 (i.e., colt). The interquartile range (IQR) is 0.783 to 0.868, with a
median value of 0.82. On the other hand, the Gini coefficient of setter
methods range from 0.75 (i.e., trove) to 0.98 (i.e., jruby). The interquartile
range (IQR) is 0.877 to 0.945, with a median value of 0.92.
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Figure 5.5: Gini coefficient distribution of getter and setter methods.

While we observed that the Gini coefficients for getter methods are nor-
mally distributed (cf. Figure 5.5(a)), the Gini coefficients for setter meth-
ods show a skewed distribution (cf. Figure 5.5(b)). Normal distributions
arise when the underlying data is sufficiently large and the popula-
tion is adequately diverse. A skewed distribution, on the other hand,
emerges when a few factors contribute multiplicatively [133]. The getter
method Gini coefficients are normally distributed, suggesting an inde-
pendence from domain and solution design. The skewed nature of the
setter method Gini coefficients, however, stipulates the opposite.

Semantic Variants

Semantic variants of getter and setter methods refer to the variety of
patterns (e.g., real, virtual) that developers employ while formulating
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solution design using property mechanism in Java. We found evidence
of their presence with varying degree of concentration across the soft-
ware systems in the Qualitas Corpus. We observed a higher concentra-
tion of real getter and real setter compared to virtual getter and virtual
setters. The more widely distributed virtual getter and virtual setters
suggests that the developers make intentional use of the exposed fields
from other classes.

The underlying reasons of using exposed fields through virtual getter
setter methods can be many. For example, functionality implemented
in one class may require data hosted in other classes. Another possible
reason could be underlying design choices of developers. They may
decompose a solution design into several aspects (e.g., data storage
module, functionality implementation module). For example, certain
classes can be used only to store data in a software system, and other
client classes can rely on such data holders for implementing function-
ality. In such a case, the presence of virtual getter and virtual setter
methods can significantly exceeds the amount of real getters and real
setters in a software system. A similar scenario is observed in the visual
component library (VCL) of Delphi [48]. In Delphi, the service super-
classes provide the basic functionality that the component subclasses
require. For this purpose, the super-class fields are exposed through
public get- and set-methods in component subclasses.

An aspect of more concern is that almost all systems also contain meth-
ods with get- and set-semantics (i.e., getter-like and setter-like), but are
not designated as such. However, the concentration of such methods is
very high (above 0.92). This suggests that these semantic variants of-
fer little value to developers and are consequently rare in practice (i.e.,
resulting in a very high concentration in a few classes). The high Gini
coefficient is indicative of what could be viewed as “accidental use”.
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Figure 5.6: The least and the highest concentrations of getter and
setter methods in the Qualitas Corpus.

Exceptional Cases

There are some software systems in the Qualitas Corpus that appear
as exceptions. We found them in almost all of the measures (e.g., meth-
ods, getters, setters). While jparse exhibits the least concentration (Gini
coefficient = 0.42), javacc (Gini coefficient = 0.92) has the most con-
centrated distribution profile for methods. These software systems are
rather small in size (less than 150 classes), and therefore the method
distribution found in them can be considered as exception and may not
necessarily be representative of developers practices.
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In case of distribution of getter methods, the software system with the
least concentration of getter methods is again jparse. It defines almost
30% of its total methods as getter methods which are dispersed in 80%
of its classes (cf. Figure 5.6(a)). On the other hand, colt has the highest
concentration of getter methods. This software system use only a few
(i.e., < 50) getter methods. In colt, 85% classes do not comprise any
getter methods at all (cf. Figure 5.6(b)).

The software system with the least concentration of setter methods is
trove. It defines less than 200 setter methods that are distributed in
only 25% classes (cf. Figure 5.6(c)). The highest concentration of setter
methods is observed in jruby, even though it contains 5055 classes.
Only 3% of classes in jruby define setter methods (cf. Figure 5.6(d)).

However, such exceptional Gini coefficients (that lie outside the IQR in-
terval) do not necessarily signal problems, but rather specific, possibly
domain-dependent, design decisions. Whether or not to trigger alarms
(that indicate the necessity of potential actions) in these cases depend
on project-specific settings. We cannot predict the initial value of the
Gini coefficients for software metrics data. But once a Gini coefficient
has been recorded for a particular measure, it moves little, typically less
than 0.1 over the lifetime of a system, but often within the bounds of
the associated regions [217].

5.3.2 Proportion of Getter and Setter Methods

Our investigation revealed that developers define getter and setter meth-
ods with a varying degree of proportions that range from 2.95% (colt)
to 69% (compiere). Figure 5.7(a) demonstrates the variability in propor-
tion of getter and setter methods in software systems of the Qualitas
Corpus. This implies that the use of getter and setter methods does
not depend on the system size size (in terms of number of classes), and
they are hosted in varying proportions of classes (cf. Figure 5.7(b)).
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Figure 5.7: Getter and Setter Methods Distribution in Qualitas Cor-
pus.
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Figure 5.8: Proportion of Pure, Real, and Virtual Getters methods in
software systems of Qualitas Corpus.

The proportions of their variants (i.e., real, virtual, pure) reveal ad-
ditional insights into which specific type of getter and setter methods
are being practiced more by developers. Figure 5.8 depicts that a sub-
stantial proportion of getter methods are pure and virtual in almost all
the software systems in Qualitas Corpus. The proportion of pure get-
ter methods (NOPG) ranges from 8.58% (compiere) to 93.85% (sablecc)
with an inter-quartile range (IQR) of 36% to 56%. About 42% software
systems employ more than 50% of their getter methods as pure getters.
On the other hand, the proportion of virtual getter methods (NOVG)
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ranges from 5.2% (compiere) to 88.6%(sablecc) with IQR of 38 to 59%.
About 49% software systems comprise more than 50% of their methods
as virtual getters. Real getter methods (NORG) make up only small pro-
portion (less than 13%) in all software systems in the Qualitas Corpus.
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Figure 5.9: Proportion of Pure, Real, Virtual and Setters methods in
software systems of Qualitas Corpus.

On the other hand, the real, virtual, and pure setter methods are em-
ployed at varying degree of proportions (cf. Figure 5.9). The proportion
of pure setter ranges from 0% (jasml) to 100% (jparse) with an inter-
quartile range (IQR) of 20% to 42%. Unlike real getter methods, the oc-
currence of real setter methods is substantially higher in number. Their
proportions varies from 0% (fitjava) to 100% (jasml) with an IQR of 25%
to 41%. Such high proportion of real setters suggests that developers
usually implement some functionality before setting fields. The propor-
tion of virtual setter methods ranges from 0% (jparse) to 100% (fitjava)
with an IQR of 21.24% to 41.25%.

While developers employ getter and setter methods along with their
variants to a varying degree, predicates (e.g., isTrue, isOpen) appear
much more sparsely in the software systems of the Qualitas Corpus.
Figure 5.10 depicts their actual occurrences in different software sys-
tems of Qualitas Corpus. Only two software systems of Qualitas Corpus
comprise more than 5000 boolean predicates. These are netbeans and
eclipse that comprise 5,609 and 7,195 boolean predicates, respectively.
On the other hand, non-boolean predicates are very few in number
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(<120). Netbeans and eclipse comprise the 94 and 110 non-boolean
predicates, respectively. This finding suggests that developers, when
defining predicates, return boolean values with some exceptions, and
thus comply with conventions.
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(a) Boolean Predicate
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(b) Non-Boolean Predicate

Figure 5.10: Boolean and Non-Boolean predicates in the software sys-
tems of Qualitas Corpus.

Figure 5.11 depicts the actual occurrences of getter- and setter-like
methods in the software systems of Qualitas Corpus. The proportion of
getter-like methods in software systems of the Qualitas Corpus ranges
from 0% (nekohtml) to 5.3% (roller). We observed that 76% software
systems employ less than 1% getter-like methods. But in large software
systems, such small proportion can still result in a high number of such
methods (e.g., eclipse: NOGLM = 797, 0.5%, netbeans: NOGLM = 792,
0.58%, jre: NOGLM = 750, 0.78%, jboss: NOGLM = 468, 0.67%).

There are only a few setter-like methods (i.e., 0% to 4.3%) when com-
pared to that of getter-like methods. We found the highest occurrence
of setter-like methods in roller (NOGLM = 227, 4.3%). About 97% soft-
ware systems including eclipse (NOSLM = 151, 0.09%) and netbeans
(NOSLM = 127, 0.09%) comprise less than 1% setter-like methods.
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Figure 5.11: Getter-like and Setter-like Methods in the software sys-
tems of Qualitas Corpus.
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and Setter Methods

Figure 5.12: Distribution of Private Fields vs. Distribution of Getter
and Setter Methods in Software Systems of Qualitas Corpus

5.3.3 Relation between Private Fields and Getter-Setter
Methods

Do the developers use the property mechanism to circumvent the visi-
bility modifiers, in particular, private? Do they define getter and setter
methods when they define private fields by default? To answer these
questions, we investigated the correlation between private fields and
getter and setter methods.

We found that the property mechanism is not being used to circum-
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vent the private visibility modifiers. The concentrations of getter and
setter methods are different from that of private fields (cf. Figure 5.12).
While the correlation (Spearman’s ρ) between the distributions of get-
ters methods and private fields is 0.54, the correlation (Spearman’s ρ)
between the distributions of setters methods and private fields is only
0.31. These substantially weak correlations do not support the hy-
pothesis that developers always define getter and setter methods with
private fields of a class (cf. RQ8).

The above results present the distribution of getter and setter methods,
but does not inform us about any potential correlation between private
fields and variants (i.e., pure, real, virtual) of getter setter methods.
Among them, only the pure getter and setter methods are designated to
retrieve and modify associated private fields. The other two are involved
with some additional tasks. To know whether developers define getter
and setter methods with private fields just to access or modify them, we
further investigated the relation between private fields and pure getter
and setter methods.

We found that there is a varying degree of correlation between them
across different software systems of the Qualitas Corpus. The com-
puted correlations are summarized as box plots (cf. Figure 5.13). The
IQR of correlation between private fields and pure getters ranges from
0.36 to 0.62 - which suggests a weak relation between them. We ob-
served a strong positive correlation (above 0.80) between private fields
and pure getters in only 11.32% of software systems. On the other
hand, the IQR of the correlation between private fields and pure setters
ranges from 0.18 to 0.46 - which indicates an even weaker relation be-
tween them. Only 5.6% of software systems show a strong correlation
(above 0.80) between private fields and pure setters.

Such low correlation coefficients between private fields and pure getter
and setter methods suggest that developers do not always tend to ac-
company a private fields with pure getter and setter methods. There is
no empirical evidence to support a claim that when developers define a
private field they will also define a getter and setter method by default.
Though getter and setter methods are used on a regular basis (all stud-

117



Chapter 5. Property Analysis

N
O

G

N
O

P
G

N
O

S

N
O

P
S

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t (

M
ea

su
re

 in
 X

 a
xi

s 
an

d 
N

O
P

riA
)

Figure 5.13: Boxplot of correlation coefficient between private fields
and (pure) getter and setter methods in software systems of Qualitas
Corpus.

ied systems make use of them), developers consciously employ them in
a manner consistent with domain and system requirements.

5.3.4 Ratio of Getter and Setter Methods

What is the ratio between getter and setter methods? We found that if a
class defines a getter method, then there is 36% chance that this class
also defines a setter method, but the odds are not evenly distributed.
Extending the ratio of getter and setter methods to 40% to 60% and
60% to 40%, respectively, yields a 55% probability that a getter method
is accompanied by some setter method. Nevertheless, we found that
the number of getter methods, in general, exceeds the number of setter
methods by a factor of 2 to 1 in almost all systems of the Qualitas
Corpus. Only ant-1.7.1 exhibits a dominance towards setter methods.

However, the dispersion of getter and setter methods is, in general, in-
versely related to their frequency (cf. Figure 5.14). Developers concen-
trate getter and setter methods in a few classes as much as possible.
But as the proportion of these methods grows the need to disperse them
also increases and becomes unavoidable eventually. Though this seems
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Figure 5.14: As the proportion of getter and setter methods increases,
their concentration decreases though the correlation is not that strong
(getter: Spearman ρ = -0.47, setter: Spearman ρ = -0.56)

natural, an important aspect of our finding is that even in cases where
30% of the methods are getters and setters, developers tend to centralize
these methods in a few classes. The Gini coefficients for 30% of getter
and setter methods assumes values typically greater than 0.7. This
suggests that some level of bias towards model-separated design [76] is
practiced.

5.4 Summary

In this chapter, we investigated how developers employ the property
mechanism (i.e., getter and setter methods) in Java. Contrary to con-
ventional belief, we found that these methods are neither commonplace
nor “evil". Developers proactively select getter and setter methods in or-
der to satisfy specific domain requirements.

Java lacks an appropriate built-in language support for property spec-
ification. As a consequence, even though Java’s “get" and “set" naming
pattern can be used to develop software components (e.g., JavaBeans),
it is merely a guideline that can be easily abandoned or misused.

We summarize the findings of this chapter below:

• There is no empirical evidence for intentional refactoring that would
encapsulate fields by means of getter and setter methods.
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• Given the considerable advice regarding whether to use or to avoid
getter and setter methods (e.g., [69,105,106,114,183]), we found
that developers use them extensively. Though getter and setter
methods are used on a regular basis (most software systems in
Qualitas Corpus make use of them), developers consciously em-
ploy them in a manner consistent with domain and system re-
quirements.

• We found that the property mechanism is not being used to cir-
cumvent the visibility modifiers, in particular, private. There is
no empirical evidence (in the Qualitas Corpus) to support a claim
that when developers define a private field they will also define a
getter and setter method by default.

• There is no empirical evidence (in the Qualitas Corpus) that the
use of getter methods is a function of the solution design or do-
main. But, the same does not apply to setter methods. We ob-
served that developers centralize data storage, but practice a much
more decentralized and domain-independent approach to data re-
trieval.

• A getter method may not always be accompanied by a associated
setter method. Our empirical evidence suggests that if a class
defines a getter method, then there is an approx. 36% chance that
this class also defines a setter method. The distribution of the
ratio between getters and setter methods fits a normal distribution.
In general, the number of getter methods exceeds the number of
setter methods by a factor of 2 to 1 in any given system, though
there are always a few classes in each system that contain more
setter than getter methods. However, the proportion of getter and
setter method is inversely related to their concentration.
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Inner Class Analysis

In this chapter, we focus on understanding developer behavior in using
the notion of inner classes in Java. We set the stage for studying the use
of inner classes at the beginning of this chapter. We then describe the
analysis method in section 6.2. This comprises a definition of set the
of software metrics and a description of the metrics analysis approach.
We present the results of our investigation in section 6.3. We conclude
this chapter by summarizing the key findings in section 6.4.

6.1 Introduction

The notion of inner class offers an abstraction mechanism that allows
us to define a class in the context of another one, and thus provides us
with a convenient means to structure intent (functionality) in program
code. This concept, first introduced in Simula, is available in many
object-oriented programming languages (e.g., C++, C#, Java, Ruby, and
Python).

The Java programming language offers two types of inner classes1:
static and non-static. The behavior of static inner classes is similar

1The term “inner classes” refers to nested types [84]. Though some literature (e.g.,
[157]) classify the nested types as static and non-static with the non-static nested
classes called inner classes, we use the term inner classes to refer to all nested types
in this chapter.
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Table 6.1: Inner Classes in Java [84]

Type Definition
Nested Top Level Any type that is defined as a static member of another type. The behavior

of this type is similar to that of top level types. This category includes
the implicitly static types (i.e., nested interfaces, enumerated types, and
annotation types).

Member Any class that is defined as a non static member of an enclosing class.
This category excludes the interfaces, enumerated types, and annotations
as these are always implicitly static.

Local A non static inner class that is defined within the body of a method, con-
structor or inside any static initializer block or instance initializer. The
scope of this class is local to the hosting block. A local class has direct
access to all the members in the hierarchy of enclosing classes (including
private members), and also has access to final local variables and final
method parameters of the enclosing method.

Anonymous A local class that is nameless. An anonymous class cannot define any
constructor as it has no name. Therefore, an instance initializer is used
when a constructor is necessary.

to that of top level classes, except that it is nested inside another type.
On the other hand, an instance of non-static inner class contains im-
plicit and hidden references to instances of the associated outer classes.
The non-static inner classes are divided into three types: Member, Local
and Anonymous (cf. Table 6.1).

The implicit reference in Java’s non-static inner classes offers a conve-
nient means (i.e., callback) to implement specific types of functionality
(e.g., GUI). For example, a software system comprising user interface
components (e.g., button, menu) can employ non-static inner classes
to accomplish an event handling mechanism [157,195], and thus can
utilize a callback facility to identify appropriate components that origi-
nate a particular event.

Besides, nesting a class inside another offers many other benefits [19].
These include logical grouping of classes (i.e., nesting helper classes
assists to create more cohesive classes), better encapsulation (i.e., re-
duces the necessity to expose private members of host classes), and
alternative to multiple inheritance (e.g., a super type of a nested class
and its host class can be different).

Yet, inner classes (particularly anonymous ones) are often considered
less powerful when compared to constructs like closures [126] - a fea-
ture available in other programming languages (e.g., Groovy). A closure
is an anonymous chunk of code that can be passed around with the
capability of accessing the original context.
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Anonymous classes in Java, however, are considered somewhat similar
to closures as both are attached to the enclosing environment. Though
strictly controlled, an anonymous class can refer to selected variables
(i.e., final variables in the enclosing method and all variables in the en-
closing class) of the defining context. The underlying reason for such
restricted access is associated with Java’s approach to deal with local
variables and parameters in methods. In Java, as usual, local variables
are stored on the stack. The associated stack space is allocated when a
method starts to execute and the stack is released when the method re-
turns. But, the final variables are not stored on the stack, instead Java
uses a method area to store them. Hence, final variables remain intact
even after the method returns, whereas the non-final values are dis-
carded (through the release of the associated stack space). Due to this
restriction, Rose [184] identified anonymous inner classes as imperfect
closures.

In addition to the closure aspect of inner classes, there is another
dimension of debate that is concerned with their syntactic aspects.
Anonymous classes in Java are considered more verbose and extremely
clumsy as they have bulky syntax [184]. As a result, when used in
program code, such classes can make resulting code somewhat diffi-
cult to read and thus can affect maintenance tasks. For this reason,
many emphasize on making the syntax more concise. For example,
Rose [184] suggests to replace such bulky syntax of inner classes with
a more concise one.

1 interface Runnable ( )
2 {
3 public void abstract run ( ) ;
4 }

Listing 6.1: A SAM Type

There exists a number of recommendations regarding inner classes and
their alternatives. One of them is the Straw-Man proposal [182] that
includes a guideline for replacement of anonymous classes with lambda
expressions. Lambda expression targets SAM type (aka, functional in-
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terface [18]) - an abstract class or interface that comprises only one
abstract method. For example, Java’s Runnable interface is a SAM
type as it comprises only an abstract method run() (cf. Listing 6.1). An
anonymous class that uses a SAM type can be be replaced by a lambda
expression (cf. Listing 6.2).

1 //Anonymous class
2 Thread th = new Thread (new Runnable ( )
3 {
4 public void run ( )
5 {
6 CallMethodOne ( ) ;
7 CallMethodTwo ( ) ;
8 }
9 } )

10 //Corresponding lambda expression
11 Thread th = new Thread ( # ( ) {CallMethodOne ( ) ; CallMethodTwo ( ) ; } )

Listing 6.2: An anonymous class that uses a SAM type can be replaced
by a lambda expression [182].

However, though there is much debate associated with the concept of
inner classes, we do not have empirical evidence on how inner classes
are actually being practiced by developers. We do not know yet to what
extent developers employ inner classes while formulating a solution de-
sign and how those inner classes are being defined. For example, are
most of the anonymous classes defined using SAM types? What is the
typical type definition pattern of anonymous classes in particular and
inner classes in general? Are they defined using inheritance?

Themuch blamed bulkiness of inner classes (that is considered to affect
code readability) is not yet well-understood. Together with the syntax of
inner classes, their size can also contribute to the bulkiness. One mea-
sure to gain an insight into their size is the number of methods hosted
in inner classes. The more methods an inner class comprise, the more
functionality it is concerned with, and consequently more bulky it can
be. For example, an anonymous class (comprising a large number of
methods) defined inside a method may contribute to bulkiness. Though
number of methods in an anonymous class depends on the interface or
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the super class being implemented or extended, to what extent do devel-
opers employ such anonymous classes? What is the typical method dis-
tribution profile in anonymous classes in particular and inner classes
in general?

Another aspect that one should also consider is the nestedness of inner
classes. As nesting is considered to increase code complexity, highly
nested inner classes may also affect code readability. Therefore, it is
often advised to structure program code by avoiding deep nesting, and
thus to yield better readability [95]. But how are inner classes nested
in Java-based software systems? Do developers highly nest them, like
Russian dolls, and thus create complex abstractions?

The answers to the above questions can provide us with better insights
into the use-cases of the inner class mechanism in Java, and thus may
assist the language change proposals (e.g., Straw-Man proposal [182]).
We therefore investigated developer practices in using inner classes in
Java-based software systems. It should be noted, however, that we did
not attempt to justify the proposals, rather we demonstrated some of
the important features of developer practices only. In particular, we
addressed the following questions in this chapter.

• RQ10 What is the typical distribution profile of inner classes in
Java-based software systems? Does the use of inner classes vary
across different domains (e.g., database, middleware)?

• RQ11 Do developers confine the use of inner classes to few classes
only?

• RQ12 Do developers use inheritance substantially to define inner
classes?

• RQ13 Do developers create highly nested abstractions using inner
classes?

• RQ14 What is the typical distribution profile of methods in inner
classes? Do SAM types occur with a high frequency?
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6.2 Analysis Method

To answer our research questions, we defined a set of software metrics.
We analyzed these metrics with different measures (e.g., Gini coeffi-
cient).

Table 6.2: Rationale for the Selected Key Measures

Name Rationale
Inner Classes Distribu-
tion

Provides us with an insight into the actual extent of inner classes
that developers employ while structuring solutions. Thus, it re-
veals the involvement of the inner class concepts in solution de-
signs.

Inner Classes Hosting
Classes

Reveals density of inner classes hosted in a class, and thus in-
form us whether developers employ inner classes in almost all the
classes in a software systems or whether inner classes are defined
in only a small proportion of classes).

Inheritance Structure of
Inner Classes

Describes the extent to which the inner classes are influenced by
the properties of their ancestors [56], and thus indicates to what
extent developers rely on inheritance to define inner classes.

Degree of Nestedness of
Inner Classes

Reveals level of nesting of inner classes, and thus indicates
whether developers write complex abstractions (as represented by
nesting level).

Breadth of Functional
Decomposition in Inner
Classes

Reveals structural semantics of inner classes, decomposed into
number of methods. Thus it offers an indication of size of the
associated inner class.

Definition of Metrics

To characterize the use of inner classes in Java-based software systems,
we defined a set of software metrics that capture different aspects of
developer practices in using inner classes.2 In particular, we focused
on 5 specific use-cases as presented in Table 6.2.

We defined corresponding metrics that capture different use-cases of
inner classes. For example, we used the depth in nesting level (DNL)
metric, similar to the depth in inheritance tree (DIT) metric [56], to quan-
tify how deeply an inner class is nested. Like the DIT metric (i.e., the
higher the value of DIT for a class is, the deeper its location in inheri-
tance tree), the higher the value of DNL for an inner class is, the more
nested it is. Consider, for example, a nesting structure of 3 classes: A,

2We considered how developers define inner classes, not how an instance of an
inner class is used to access attributes in an instance of the outer (host) class.
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B, and C. The class A contains class B, and the class B contains class
C. In this case, the DNL values of these classes are 0, 1, and 2, respec-
tively. Given a class, we counted its inner classes recursively (i.e., the
class A has 2 inner classes and class B has 1 inner class).

 

Type 

Outer (non-nested) Inner (nested) 

Static Non Static 

Nested Top Level Member Local Anonymous 

Figure 6.1: Classification of inner classes followed in our analysis.

Table 6.3: Measures Focused on Different Types of Inner Classes

Inner Class Measures
Name Purpose Relation
Number of Types (NT) Counts all defined classes and in-

terfaces
-

Number of Outer Classes (NOC) Counts all defined classes which
are not enclosed in other classes

NOC ⊆ NT

Number of Declared Inner Classes (NDIC) Counts all defined classes which
are enclosed within other classes

NDIC ⊆ NT

Number of Declared Nested Classes (NDNC) Counts all defined static nested
classes

NDNC ⊆ NDIC

Number of Declared Member Classes (NDMC) Counts all defined non static mem-
ber classes

NDMC ⊆ NDIC

Number of Declared Local Classes (NDLC) Counts all defined non static (and
named) local classes

NDLC ⊆ NDIC

Number of Declared Anonymous Classes
(NDAC)

Counts all defined non static
anonymous classes

NDAC ⊆ NDIC

In Qualitas Corpus, the proportion of nested interfaces is very small
(less than 3%). We decided not to study them in isolation. However,
the definitions of all collected metrics are presented in Tables 6.3 to
6.7. We followed the classification depicted in Figure 6.1 while defining
metrics.
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Table 6.4: Measures Focused on Depth in Inheritance Tree of Inner
Classes

Inner Class Measures
Name Purpose Relation
Depth of Inheritance Tree Depth in inheritance tree of a given

inner class
-

Number of Inner Classes Defined Using Inher-
itance (ICDUI)

Counts all inner classes with DIT
> 1

ICDUI ⊆ NDIC

Number of Nested Top Level Classes Defined
Using Inheritance (NCDUI)

Counts all nested top level classes
with DIT > 1

NCDUI ⊆ NDNC

Number of Member Classes Defined Using In-
heritance (MCDUI)

Counts all member classes with
DIT > 1

MCDUI ⊆ NDMC

Number of Local Classes Defined Using Inher-
itance (LCDUI)

Counts all local classes with DIT >
1

LCDUI ⊆ NDLC

Number of Anonymous Classes Defined Us-
ing Inheritance (ACDUI)

Counts all anonymous classes
with DIT > 1

ACDUI ⊆ NDAC

Table 6.5: Measures Focused on Typical Parents (Interfaces / Super
Classes) of Inner Classes

Parents (of Inner Classes) Measures
Name Purpose Relation
Number of Parents of Inner Classes
(NOPIC)

Counts all unique interfaces and super
classes implemented and extended, respec-
tively, by inner classes

-

Number of Library Interfaces and
Super Classes (LISC)

Counts total number of unique interfaces/-
super classes that belong to the Java stan-
dard library [17]

LISC ⊆ NOPIC

Number of Other Interfaces and Su-
per Classes (OISC)

Counts total number of unique interfaces/-
super classes that do not belong to the Java
standard library

OISC ⊆ NOPIC

Number of Implementations/Exten-
sions of Library Interfaces and Su-
per Classes (IELISC)

Counts total number of times the LISCs are
implemented/extended by inner classes

-

Number of Implementations/Exten-
sions of Other Interfaces and Super
Classes (IEOISC)

Counts total number of times the OISCs are
implemented/extended by inner classes

-

Table 6.7: Measures Focused on Methods in Inner Classes

Method (in Inner Class) Measures
Name Purpose Relation
Number of Methods in All Classes (NOMA-
LLC)

Counts total number of non-
abstract methods defined in all
classes (i.e., outer, inner)

-

Number of Methods in Outer Classes
(NOMOC)

Counts total number of methods
defined in outer classes

NOMOC ⊆ NOMALLC

Number of Methods in Nested Top Level
Classes (NOMNC)

Counts total number of methods
defined in nested top level classes

NOMNC ⊆ NOMALLC

Number of Methods in Member Classes
(NOMMC)

Counts total number of methods
defined in member classes

NOMMC ⊆ NOMALLC

Number of Methods in Local Classes
(NOMLC)

Counts total number of methods
defined in local classes

NOMLC ⊆ NOMALLC

Number of Methods in Anonymous Classes
(NOMAC)

Counts total number of methods
defined in anonymous classes

NOMAC ⊆ NOMALLC
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Table 6.6: Measures Focused on Depth in Nesting Level of Inner
Classes

Inner Class Measures
Name Purpose Relation
Depth in Nesting Level Depth in nesting level of a given in-

ner class
-

Number of Inner Classes Nested at Level Two
or More (ICNLTM)

Counts all inner classes with DNL
> 1

ICNLTM ⊆ NDIC

Number of Nested Top Level Classes Nested
at Level Two or More (NCNLTM)

Counts all nested top level classes
(and interfaces) with DNL > 1

NCNLTM ⊆ NDNC

Number of Member Classes Nested at Level
Two or More (MCNLTM)

Counts all member classes with
with DNL > 1

MCNLTM ⊆ NDMC

Number of Local Classes Nested at Level Two
or More (LCNLTM)

Counts all local classes with with
DNL > 1

LCNLTM ⊆ NDLC

Number of Anonymous Classes Nested at
Level Two or More (ACNLTM)

Counts all anonymous classes
with DNL > 1

ACNLTM ⊆ NDAC

Data Analysis Approach

We used the same measures (e.g., the Gini coefficient) that we employed
in previous chapters. We followed frequency distribution analysis tech-
nique in this chapter too. For example, we used box plots to summarize
proportion of different inner classes (e.g., member, local), and bar plots
to depict their system specific proportions.

6.3 Observations

In this section, we present the result of our empirical investigation of dif-
ferent aspects of usage patterns of inner classes in Java-based software
systems. This section is divided into: (i) inner class distribution, (ii) in-
ner class distribution across different domains, (iii) density of inner
classes in enclosing classes, (iv) inheritance structure of inner classes,
(v) degree of nestedness of inner classes, and (vi) breadth of functional
decomposition in inner classes.

6.3.1 Inner Class Distribution

To what extent do developers employ inner classes while organizing so-
lution design? To answer this question, we investigated the proportion
of different inner classes in the software systems of Qualitas Corpus.
In this section, we present the resulting outcomes. In particular, we
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focus on (i) degree of share of inner classes in the total class space, and
(ii) degree of share of different types of inner classes (e.g., nested top
level, member, local and anonymous) in total class space.

Degree of Share - Overview

The amount of inner classes in the software systems of the Qualitas
Corpus ranges from 0% to almost 75% of the total system size (mea-
sured in terms of number of types). While Figure 6.2(a) depicts the
distribution of share of inner classes in different software systems, Fig-
ure 6.2(b) indicates that the use of inner classes in a solution design
does not depend on the size of the resulting software system. Develop-
ers employ inner classes as they see fit.
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Figure 6.2: Proportion of Inner Classes in the Investigated Software
Systems (a) Sorted (ascending) based on proportion of Inner Classes
(b) Sorted (ascending) based on total (outer and inner) Type Count

Yet, the use of inner classes in a software system can depend on variety
of factors. These include system specific requirement and developer de-
sign choices. In addition, the underlying problem domain of a software
system can also be a contributing factor to motivate developers to for-
mulate a solution design using inner classes. For example, developers
of a software system that requires GUI functionality are likely to prefer
inner classes to utilize the benefits of the callback mechanism offered
by non-static inner classes.
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Table 6.8: Least inner classes employing software systems (7% of
Qualitas Corpus).

System Size Inner Classes (%) Description
jFin_DateMath 60 0 Trade processing utility.
jparse 69 0 XML parser.
mvnforum 272 0 J2EE technology(Jsp/Servlet) based bul-

letin board.
ivatagroupware 378 2 J2EE technology based groupware solution.
jrat 246 4 Runtime performance profiler for the Java

platform.
freecs 147 5 Java-based chat server.
c_jdbc 581 6 Database middleware.

But to what extent do software systems employ inner classes? What are
the reasons? We observed that the software systems utilizing either no
or only a few inner classes (cf. Table 6.8) are rather small in size. Their
system size (in terms of type count) ranges from 60 (jFin_DateMath) to
581 (c_jdbc).

Table 6.9: Most inner classes employing software eystems (7% of Qual-
itas Corpus).

System Size Inner Classes (%) Description
jomeny 193 72 Plugin-based Accounting Framework
drjava 3866 67 Lightweight Development Environment for

Java
gallon 803 66 Media Server
pooka 869 64 Email Client
rssowl 1682 63 News Feed Reader
azureus 7231 60 Bittorrent Client
netbeans 32475 59 IDE

On the other hand, software systems that make extensive use of in-
ner classes (cf. Table 6.9) have varying degrees of system size, ranging
from 193 (jomeny) to 32,475 (netbeans). Most of the inner class-rich
software systems incorporate an extensive amount of GUI functionality.
For example, galleon - a media server, employs inner classes for imple-
menting GUI components. But an extensive use of inner classes is not
just restricted to GUI functionality. For example, jmoney - an account-
ing framework, is also an inner class-rich software system that uses a
plug-in architecture (e.g., user interface components, new properties to
accounts, transactions). Another example is drjava - a lightweight de-
velopment environment for Java. This software system employs inner
classes for implementing interaction interpreters (particularly for the
beginners) that allows quick evaluation of Java expressions.
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Table 6.10: Proportion of different inner class intensive software sys-
tems

Proportion of Different Inner Class Intensive Software Systems
Name Definition Count (%)
Inner Class Intensive Counts software systems comprising more than

50% inner classes of total classes
15

Nested Top Level Class Inten-
sive

Counts software systems comprising more than
50% nested top level classes of total inner classes

27

Member Class Intensive Counts software systems comprising more than
50% member classes of total inner classes

7

Local Class Intensive Counts software systems comprising more than
50% local classes of total inner classes

0

Anonymous Class Intensive Counts software systems comprising more than
50% anonymous classes of total inner classes

36

Degree of Share - Different Inner Classes

What are the contributions of different types of inner classes (e.g., lo-
cal, anonymous, member, nested top level) in total class space? While
Figure 6.3 depicts the proportion of share of various inner classes, Ta-
ble 6.10 reveals the proportion of software systems comprising more
than 50% inner classes. We describe the usage profiles of different
inner classes in various software systems below.

Nested Top Level Classes

The software systems in the Qualitas Corpus comprise a varying pro-
portion of nested top level classes (cf. Figure 6.3(a)), ranging from 0% to
98%. The highest proportion (98%) is observed in emma, a code cover-
age tool. The purpose of using extensive nested top level classes in this
software system includes the implementation of visitor patterns [85],
html report generation, and parsing.

Besides emma, there are 5 more software systems in the Qualitas Cor-
pus that employ an extensive amount of nested top level classes. These
are cobertura, jasml, itext, javacc, and velocity. They comprise more
than 80% nested top level classes. It is important to note that these
software systems are small in size (median system size is 201 types).

On the other hand, we observed that 38% of the software systems define
less than 20% of their total inner classes as nested top level classes.
This includes 2 software systems (i.e., quilt and webmail) that do not
employ any nested top level classes at all.
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(d) Anonymous classes

Figure 6.3: Proportion of various inner classes. (Percentage is calcu-
lated with respect to all inner classes of given software system. For ex-
ample, percentage of anonymous classes in a software system is com-
puted based on total inner classes in that software system.)

Member Classes

Unlike instances of nested top level classes, an instance of a member
class has an implicit reference to an instance of its enclosing class. De-
velopers may utilize that implicit reference through the use of member
classes. But empirical evidence suggests that such classes are not be-
ing used extensively in most of the software systems. More than half
(56%) of the software systems in the Qualitas Corpus contain less than
20% member classes only (cf. Figure 6.3(b)). The proportion of member
class intensive applications is relatively small (7%) compared to other
types of inner classes (cf. Table 6.10).

133



Chapter 6. Inner Class Analysis

Local Classes

Figure 6.3(c) shows that the use of local classes3 is very rare in the
studied software systems. In Qualitas Corpus, 67% of the software
systems do not use local class at all. On the other hand, only 1 local
class is found in 11% of the software systems, and 2 to 20 local classes
are observed in 17% of the software systems. Only 5 software systems
(i.e., netbeans, nakedobjects, jre, jboss, eclipse) employ more than 20
local classes, yet the proportion is less than 1% for all of these systems.

The underlying reasons of such limited use of local classes can be at-
tributed to a developer design choices. Either they do not find the con-
cept of local inner classes useful in formulating a solution design or
they use some other language construct that they are more comfort-
able with. Whatever the reasons are, the rare use of the concept of
local class indicates a possible limited utility in Java-based software
development, which in turn merits its removal (or deprecation) from
the Java language.

Anonymous Classes

Unlike local classes, developersmake extensive use of anonymous class-
es (cf. Figure 6.3(d)). About 36% of the software systems in the Qualitas
Corpus comprise more than 50% anonymous classes. These include
7 software systems (i.e., azureus, colt, ireport, jag, joggplayer, rssowl,
webmail) where more than 80% of their total inner classes are anony-
mous.

The reason for such an extensive use of anonymous inner classes in-
clude a wide variety of tasks implemented by them. For example, azure-
us, a bittorrent client, uses anonymous classes for event management
activities (e.g, connection management, disk management, packet han-
dling, URI handling). Colt - a set of open source libraries that fa-
cilitate high performance scientific and technical computing in Java,
employs anonymous classes for mapping of different types (e.g., int-

3Though anonymous classes are also local classes, with local classes we refer to the
non-anonymous local classes only (i.e., local classes that do have an explicit name).
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double, long-object). Another software system jag (Java application
generator), employs anonymous classes for GUI functionality.

On the other hand, there are software systems that make limited use of
anonymous classes. About 17% of the software systems use less than
10 anonymous classes. These include 5 software systems (i.e., cober-
tura, informa, jasml, javacc, velocity) that do not employ any anony-
mous inner classes at all. These systems are fairly small in size (i.e.,
median system size is less than 150). In addition, more than 80% of
the inner classes are nested top level classes in all these systems (ex-
cept the software system informa that comprises only 50% nested top
level classes).

6.3.2 Inner Class Distribution - Domain Perspective

Given the varying degree of proportion of different inner classes in Java-
based software systems, what are their proportions in different do-
mains? Do the use of inner classes vary across domains (e.g., parser,
middleware, tools)? To answer these questions, we studied the inner
class usage profiles from a domain perspective. Our investigation re-
veals that the proportion of inner classes varies from domain to domain
(cf. Figure 6.4).
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Figure 6.4: (a) Proportion of various inner classes (b) Proportion of
inner classes in different domains
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But what are the contributions of different inner classes (e.g., nested
top level, member, anonymous, local) in various domains? To facili-
ate our understanding on which specific type of inner classes consti-
tute more in a particular domain, we studied the domain-specific usage
profile for each category of inner classes (cf. Figure 6.5).
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Figure 6.5: Proportion of different inner classes in various domains
(a) Nested Top Level Classes, (b) Member Classes, (c) Local Classes, (d)
Anonymous Classes

We observed that anonymous classes are used substantially in most
domains (7 domains comprise more than 40% anonymous classes - cf.
Table 6.11). Only 3 domains (i.e., parser, diagram generator and lan-
guage) use nested top level classes over 40%. It is evident that the use
of local classes is very limited in almost all domains (cf. Figure 6.5(c)).
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Table 6.11: Median of proportion of different inner classes in various
domains

Median (%)
Domain Inner Classes Nested Top

Level Classes
Member
Classes

Local Classes Anonymous
Classes

Parser 24.14 52.56 16.66 0.00 23.97
Graphics 42.12 19.32 19.41 0.11 56.34
Games 22.27 13.65 22.25 0.00 64.02
IDE 43.55 26.99 13.15 0.42 55.86
Diagram 23.75 49.36 12.00 0.00 29.94
Database 17.92 23.35 23.81 0.00 55.61
SDK 26.03 20.59 10.20 0.00 34.76
Middleware 20.91 27.61 15.33 0.00 40.00
Server 16.51 28.94 27.86 0.00 34.56
Language 24.54 46.71 6.28 1.56 45.44
Testing 23.14 38.29 14.81 0.00 22.22
Tools 30.70 19.12 19.69 0.00 40.94

While the IQRs of nested top level and anonymous classes covers a
broad range in most of the domains, the IQRs of member classes are
comparatively confined within a small range (10% to 30%).

But what are the reasons for such varying proportions of different inner
classes in various domains? The underlying reasons include the na-
ture of functionality implemented in the constituent software systems.
For example, jhotdraw, a software system in the graphics domain, uses
anonymous classes for implementation of GUI and drawing function-
ality. Antlr, a software systems in the parser domain, uses nested top
level classes for grammar specification in a parser class.

6.3.3 Density of Inner Classes in Enclosing Classes

While the proportion of inner classes discussed above illustrates the
actual scenario that captures to what extent developers employ different
types of inner classes, it does not inform us how many classes host
inner classes. Do developers formulate solution designs by defining
inner classes in a few number of enclosing classes or do they disperse
them across the classes of a software system?
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Figure 6.6: (a) Concentration profile of various inner classes (b) Con-
centration profile of inner classes in various domains

The distribution of inner classes in the investigated software systems is
highly concentrated in only a few top-level classes. The Gini coefficient
of inner classes in 93% of the software systems of the Qualitas Corpus
is above 0.88, suggesting a highly uneven distribution of inner classes.
This observation holds even in cases when a software system make
extensive use of inner classes. For example, though the software system
eclipse has 41% inner classes, the Gini coefficient of inner classes is
very high (0.92), suggesting that all the inner classes are defined in only
a few top-level classes.

We observed that the width of the interquartile range (IQR) (cf. Ta-
ble 6.12) is very narrow, suggesting a small band of inner classes’ typ-
ical bounded regions. All the values are above 0.90, which indicates a
highly concentrated distribution profile of inner classes. The interquar-
tile range (IQR) of the Number of Declared Inner Classes distribution is
the widest one. On the other hand, the interquartile range (IQR) of the
Number of Declared Local Classes distribution is almost close to zero.
This is expected as most of the software systems do not comprise any
local class at all, limited use of local classes in several systems is re-
stricted to few enclosing classes (discussed in previous sections). As a
result, we observed a highly concentrated distribution (i.e., Gini coef-
ficient above 0.99) and a very narrow interquartile range (i.e., width of
IQR is 0.02) of local classes.
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Measure Interval Width
Number of Declared Inner Classes [0.918, 0.959] 0.041
Number of Declared Nested Classes [0.955, 0.985] 0.030
Number of Declared Member Classes [0.969, 0.989] 0.019
Number of Declared Local Classes [0.997, 0.999] 0.002
Number of Declared Anonymous Classes [0.952, 0.986] 0.034

Table 6.12: Narrow Bounded regions of inner classes (cf. Figure 6.7).
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Figure 6.7: Narrow bounded regions of various inner classes (a) Inner
classes (b) Nested top level classes (c) Member classes (d) Anonymous
classes (Local classes are excluded due to very few data points)
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Though developers define inner classes in a few number of top level
classes, their concentration is inversely related to their occurrences.
That is, if the total number of inner classes increases, the concentration
of the inner classes decreases. Figure 6.8 shows that there is a negative
relation between the proportion of inner classes present in a software
systems and their corresponding concentration. Themore inner classes
are in Java-based software systems, the more they are dispersed (i.e.,
thus reducing the chance of growing inner class basedGod-like classes).
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Figure 6.8: Relation between the proportion and distribution of differ-
ent classes in the software systems of the Qualitas Corpus. (a) Inner
classes, (b) Nested top level classes, (c) Member classes, and (d) Anony-
mous classes. (Local classes are excluded due to very few data points.)
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6.3.4 Inheritance Structure of Inner Classes - Nature
of Type Definition

When classes are defined using inheritance, many super classes can
potentially influence them [55]. The deeper the class in the hierarchy,
the more methods and classes are involved, resulting in a compara-
tively more complex solution design [55,192]. Moreover, a higher depth
in inheritance is often blamed for an increasing difficulty to maintain a
software system [131]. For such reasons, substantial use of inheritance
in object-oriented software systems is discouraged by many (e.g., [85]).
Yet, developers may use inheritance for different reasons (e.g., code
reuse).

But how are inner classes being defined? Do developers use inheritance
substantially to define inner classes? Do developers follow similar in-
heritance structure in case of both inner and outer classes? To what
extent the developers use the Java standard library types [17] as par-
ents of inner classes?

In this section, we present (i) Extent of inner classes defined using in-
heritance, (ii) Comparison of inheritance structure of inner and outer
classes, and (iii) Use of system specific and standard library types as
parents of inner classes.

Extent of Inner Classes Defined Using Inheritance

As depicted in Figure 6.9, a substantial proportion of inner classes in
all the software systems of the Qualitas Corpus do not use inheritance.
The value of DIT of most of the classes is 1.4 This suggests that devel-
opers tend to somewhat limit the use of inheritance in inner classes (cf.
Figure 6.9). When inner classes are defined using inheritance, most of
them appear at level 2 in the inheritance tree. Yet, the highest values
of DIT of different types of inner classes are quite high. We found that
the highest value of DIT of both nested top level classes and member
classes is 9, local classes is 5, and anonymous classes is 10.

4In our analysis, DIT = 1 means inherited from default parent java.lang.Object.
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Figure 6.9: DIT of various inner classes (Sorted from higher to lower
count)

Figure 6.9 provides us with an overview of use of inheritance in inner
classes in the entire corpus. In order to gain an insights into inheri-
tance at individual software system level, we investigated the proportion
of inner classes being defined using inheritance for each software sys-
tem in Qualitas Corpus.

As shown in Figure 6.10(a), most of the software systems in the Qual-
itas Corpus have a limited proportion of nested top level classes that
are defined using inheritance (NCDUI). We found 49% of the software
systems that comprise less than 20% NCDUI. On the other hand, few
software systems (i.e., c_jdbc, fitjava, jre) exhibit more than 90% NC-
DUI. But such high proportion is observed in some systems due to the
use of only a few nested top level classes, For example, c_jdbc and fit-
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Figure 6.10: Inner classes that are defined using Inheritance (Percent-
age is calculated with respect to corresponding classes. For example,
percentage of DIT>1 in anonymous classes of a given software system is
computed based on total anonymous classes in that software system.)

java have less than 20 nested top level classes. The other system (jre)
employs 2902 nested top level classes, and almost all of them (99%) are
are NCDUI.

About 52% of the software systems comprise less then 20% member
classes that are defined using inheritance (MCDUI) (cf. Figure 6.10(b)).
The highest proportion (99%) of such classes is observed in jre (that
has 5,397 member classes). Eclipse (with 2,264 member classes) has
51% MCDUI and Netbeans (with 2,504 member classes) has only 20%
MCDUI.
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Only 12% of the software systems define local classes using inheritance
(LCDUI) (cf. Figure 6.10(c)). Though some software systems show a
high proportion of LCDUI (e.g., 51% in eclipse, 100% in jre), they com-
prise only less than 35 LCDUI.

About 63% of the software systems define less than 20% anonymous
classes using inheritance (ACDUI) (cf. Figure 6.10(d)). Yet, we observed
5 software systems that define more than 80% ACDUI. Some of these
software systems employ only a few anonymous classes. These are fit-
java (AC=1, ACDUI=100%) and sablecc (AC=25, ACDUI=100%). The
rests employ a substantial number of anonymous classes. These are
openjms (AC=321, ACDUI=81%), castor (AC=215, ACDUI=98%), and jre
(AC=1,161, ACDUI=100%).

1 2 3 4 5 6 7 8 9 10

DIT (Anonymous Classes - Eclipse-3.2)

C
ou

nt

0
20

00
40

00
60

00
80

00

(a) Eclipse

1 2 3 4 5 7

DIT (Anonymous Classes - Netbeans-6.9.1)

C
ou

nt

0
20

00
40

00
60

00
80

00

(b) Netbeans

Figure 6.11: DIT of anonymous classes in two large software systems

Though limited use of inheritance is observed in defining inner classes,
few software systems (e.g., jruby, eclipse) comprise inner classes that
are located deeply (up to 10) in inheritance tree (cf. Figure 6.11). In
eclipse, the purpose of using inner classes with higher DIT values in-
clude UI (user interface) functionality implementation. In jruby, we ob-
served that inner classes with higher DIT values are the results of both
machine generated code and written program code (cf. Figure 6.12).
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Figure 6.12: DIT of Inner classes in JRuby (a) Machine generated code,
(b) Written program code

Comparison of inheritance structure of inner and outer classes

To gain an overview of the use of inheritance in defining outer and inner
classes, we computed the proportion of both type of classes at each
level of inheritance (e.g., DIT = 1, 2) for all the software systems of the
Qualitas Corpus. The results are depicted in Figure 6.13.
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Figure 6.13: Proportion of different types (i.e., Outer classes, Outer
Interfaces and Inner classes) with varying DIT values (DIT = 7 means
DIT 7 and above) of the software systems in the Qualitas Corpus.

145



Chapter 6. Inner Class Analysis

We observed that the proportion of inner classes (65% at DIT = 1, 29%
at DIT = 2) are comparatively higher than that of outer classes (47% at
DIT = 1, 26% at DIT = 2) at inheritance level one and two. At deeper
levels (i.e., DIT = 3 and more), the proportion of outer classes dominate
the proportion of inner classes. This suggests that more outer classes
are involved in inheritance at higher depth.

Our observation, with regards to the use of inheritance in outer classes,
supports the finding of a recent study, conducted by Tempero et al.
[209], “an apparently high use of inheritance is a characteristic of ac-
cepted Java programming practice”. This study, however, did not con-
sider inner classes, and therefore, the finding does not cover inner
classes. We observed a limited use of inheritance in inner classes. As
the purpose of inner classes include assisting functionality implemen-
tation in outer classes (i.e., acting as helper classes), the responsibility
of both type of classes may not be exactly the same. Therefore, though
high use of inheritance is observed in case of outer classes, the inner
classes in the software systems of the Qualitas Corpus exhibit some-
what less use of inheritance.

Use of system specific and standard library types as parents of
inner classes

What are the super classes and interfaces that the inner classes extend
and implement? Are all of them belong to the Java standard library?
The answer will assist us to gain an insight into typical parents (root) of
inner classes, and thus can provide an indication of functionality being
implemented by inner classes. Moreover, we can identify the extent of
use of standard library in defining inner classes.

Though developers may define custom super classes and interfaces (and
also use third party utility) based on system specific requirements, they
may also make use of Java standard library [17] for a particular pur-
pose. While the custom super classes and interfaces are likely to be
system specific, the Java standard library appears to be a more com-
mon utility that can be used, in general, in different software systems.
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Table 6.13: 20 Most Frequent Interfaces (Library) implemented by the
Inner Classes, (These are 4% of the total interfaces but contribute 84%
of the total implementations)

Interface Count (%)
java.lang.Runnable 21.18
java.awt.event.ActionListener 16.45
java.security.PrivilegedAction 11.16
java.io.Serializable 6.10
java.util.Comparator 4.56
java.util.Iterator 4.90
java.beans.PropertyChangeListener 3.29
java.security.PrivilegedExceptionAction 3.18
java.util.Enumeration 1.55
javax.swing.event.ChangeListener 1.45
java.awt.event.ItemListener 1.33
java.util.Map$Entry 1.27
javax.swing.event.DocumentListener 1.24
javax.swing.event.ListSelectionListener 1.20
javax.swing.plaf.UIResource 1.13
java.lang.Comparable 1.08
java.util.ListIterator 0.79
java.io.FilenameFilter 0.75
javax.swing.Icon 0.66
java.lang.Cloneable 0.64
Total 84.37

Is there any set of super classes and interfaces in the Java standard
library that is being used frequently to define inner classes?

We observed that only a few interfaces are implemented and super
classes are extended repeatedly (cf. Table 6.13 and Table 6.14) from
the Java standard library.5 As expected, this finding suggests that
the usage of the inner classes is aligned with the implementation of
some specific common behaviors. We found that most of the inner
classes are used significantly for Graphical User Interface (GUI) pur-
poses. This also accounts for the observed interface and superclass
frequencies. For example, both the ActionListener interface and the
AbstractAction class that provide us with a useful mechanism to im-
plement listeners for handling action events are found to be used with
high frequencies (16.5% and 9%, respectively).

Based on the data set investigated, we observed that interfaces are being
implemented more than extension of super classes while defining inner

5We used the Oracle’s API specification [17] to identify the interfaces and super
classes that belong to the Java standard library. We excluded, however, the default
parent java.lang.Object in this case.
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Table 6.14: 20 Most Frequent Super Classes (Library) extended by the
Inner Classes, (These are 3% of the total super classes but contribute
60% of the total extensions)

Super Class Count (%)
javax.swing.AbstractAction 9.01
java.lang.Enum 8.31
java.lang.Thread 7.72
java.util.AbstractSet 4.50
java.awt.event.MouseAdapter 4.43
java.awt.event.WindowAdapter 4.18
javax.swing.JPanel 2.35
java.lang.Error 1.95
java.util.AbstractCollection 1.83
java.awt.event.FocusAdapter 1.79
java.awt.event.KeyAdapter 1.79
java.lang.ThreadLocal 1.61
java.lang.RuntimeException 1.50
org.xml.sax.helpers.DefaultHandler 1.41
java.lang.Exception 1.40
javax.swing.border.AbstractBorder 1.27
javax.swing.DefaultListCellRenderer 1.27
java.io.InputStream 1.27
javax.swing.filechooser.FileFilter 1.18
java.lang.ref.WeakReference 1.09
Total 59.69

classes. Only 439 distinct interfaces are implemented 41,447 times.
On the other hand, 841 super classes (excluding object) are extended
19,186 times. Such higher frequency of interface implementation indi-
cates that developers tend to follow a much advised design guideline
“favor object composition over class inheritance” [85]. For example,
while implementing concurrent behaviors, we observed that develop-
ers implement the java.lang.Runnable interface (21.18%) more than
they extend the java.lang.Thread class (7.72%).

While the above findings provide us with an insight into the parents of
inner classes that belong the Java standard library, it would be useful
to know about the parents that do not belong to that library. But the
custom interfaces and super classes are diverse in nature and usually
originate from a variety of sources (e.g., user defined, third party utility).
Therefore, we do not provide a common list of such interfaces and super
classes.

Instead, we present the proportion of parents of inner classes that be-
long to the Java standard library and that do not. Such comparative
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Software Systems - Sorted by Number of Inner Classes (NDIC) - Ascending - Left to Right
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Figure 6.14: Number of unique interfaces implemented and super
classes extended by inner classes of the software systems in the Qual-
itas Corpus.

proportions allow us to gain an insight into the extent of library and
non-library types usage in defining inner classes in the software sys-
tems of the Qualitas Corpus.

We observed that developers, while defining inner classes, use Java
standard library types with a varying degree of proportion (cf. Fig-
ure 6.14). Inner classes in almost all the software systems in the Qual-
itas Corpus are defined using the library types. Only two software sys-
tems (i.e., displaytag and javacc) do not make use of them. These soft-
ware systems employ less than 15 inner classes only. On the other
hand, the inner classes of only four software systems (i.e., xmojo, jsxe,
jmoney, quickserver) use more than 80% library interfaces and su-
per classes (LISC). These software systems employ less than 200 inner
classes, and therefore may not represent the typical profile.

The median proportion of unique interfaces and super classes that be-
long to the Java standard library and also used in defining inner classes
(LISC) is 35%. This suggests that 50% of the total software systems in
the Qualitas Corpus make a substantial use of custom types (e.g., user
defined, third party utility) as parents of inner classes. Inner classes
in large software systems like eclipse and netbeans also employ a sub-
stantial number of custom types. Such custom types are often system-
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specific in nature. For example, 84% of the non-library interfaces and
super classes (OISC) in eclipse belong to the package org.eclipse,
suggesting system specific functionality implemented by the associated
inner classes.

Software Systems - Sorted by Number of Inner Classes (NDIC) - Ascending - Left to Right
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Figure 6.15: Number of times different interfaces and super classes
are implemented and extended, respectively, by inner classes of the
software systems in the Qualitas Corpus.

However, one common library interface or super class may be used as
the parent of several inner classes. To gain an insight into the typical
frequency of parents of inner classes, we investigated how many times
a given interface or super class is implemented or extended, respec-
tively, by an inner class. Figure 6.15 shows the proportion of frequency
of library interfaces, library super classes, other interfaces, and other
super classes in all the software systems of the Qualitas Corpus.

The median proportion of total number of implementations of library in-
terfaces and extensions of library super classes (IELISC) is 47%. This
proportion (IELISC) is more than 80% in 9 software systems (i.e., ire-
port, ivatagroupware, jtopen, joggplayer, jsXe, xmojo, jmoney, quick-
server, and webmail). But most of these software systems do not com-
prise many inner classes (NDIC). In fact, all of these software systems,
except ireport and jtopen, employ less than 200 inner classes. The soft-
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ware systems ireport (NDIC=1,746) and jtopen (NDIC=683) extensively
rely on Java standard library while defining inner classes. In ireport,
only 23 library interfaces are implemented 1301 times, and 15 library
super classes are extended 256 times. On the other hand, only 23 non-
library interfaces are implemented 70 times, and 19 non-library super
classes are extended 118 time. This suggests that the library types are
more frequently used in defining inner classes in ireport. We observed
similar results in case of jtopen, too.

On the other hand, there are software systems in the Qualitas Cor-
pus where the non-library interfaces and super classes (OISC) are used
more frequently. In only 11% of the software systems, the proportion
of non-library interface implementations and super class extensions
(IEOISC) is above 80%. But most of these software systems make lim-
ited use of inner classes (less than 100). The software system azureus
(NDIC=4358) is one of the exceptions. A substantial proportion of non-
library interfaces and super classes (OISC) belong to its core packages.
These are used as parents of inner classes repeatedly, causing the pro-
portion of non-library interface implementations and super class ex-
tensions (IEOISC) to be higher than the library ones.

However, whether an inner class is defined using library types or user
defined types in a particular software system depends on associated
requirements, and therefore can vary across different software systems
of the Qualitas Corpus. It is evident that the types in Java standard
library does not serve as parents of all inner classes (as almost all the
software systems comprise custom types as parents of inner classes).
This causes developers to write their own types (or use third party util-
ity) to satisfy system specific requirements while defining inner classes
in Java-based software development.

6.3.5 Degree of Nestedness

The nesting profile of different inner classes of the investigated Java
based software systems is depicted in Figure 6.16. Though most of
the inner classes are found to be nested at level 1, it can rise up to
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Figure 6.16: Level of nesting of various inner classes (a) Inner classes
(b) Nested top level classes (c) Member classes (d) Anonymous classes

level 6. The highest nesting level of nested top level classes is 3 (27
classes), member classes is 4 (2 classes), local classes is 3 (2 classes),
and anonymous classes is 6 (2 classes).

In 92% of the software systems in Qualitas Corpus, the proportion of
nested top level classes that are nested at level 2 or more (NCNLTM) is
less than 10% (cf. Figure 6.17(a)). The highest proportion (29.37%) of
such NCNLTM is found in weka (NC=269, NCNLTM=79).

In 94% of the software systems, less than 10% of the member classes
are nested at level 2 or more (cf. Figure 6.17(b)). The application emma
employs two member classes, one nested at level 1 and the other at
more than one, resulting in proportion of MCNLTM to be 50%.
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(a) Nested top level classes
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(b) Member classes
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(c) Local classes
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(d) Anonymous classes

Figure 6.17: Inner classes with nesting level more than one (Percent-
age is calculated with respect to corresponding classes. For example,
percentage of nesting level >1 in anonymous classes of a given software
system is computed based on total number of anonymous classes in
that software system.)

We observed that a very limited number of software systems employ
only a few local classes, and most of them are nested at level 2 or more.
The proportion of LCNLTM appears high in Figure 6.17(c) due to only
a few local classes. For example, some software systems that show
more than 90% LCNLTM are xmojo (LC=12, LCNLTM=12), openjms
(LC=1, LCNLTM=1), ganttproject (LC=3, LCNLTM=3), eclipse (LC=65,
LCNLTM=63), aspectj (LC=22, LCNLTM=19).

About 66% of the software systems comprise less than 10% anonymous
classes that are nested at level 2 or more (ACNLTM). Some software
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Figure 6.18: Highest nesting level observed in anonymous classes in
(a) DrJava, and (b) Netbeans

systems show above 30% ACNLTM. These are drjava (AC=1414, AC-
NLTM=383), jboss (AC=742, ACNLTM=290), trove (AC=255, ACNLTM=97).

The highest level of nesting in inner classes is found in drjava [11] -
a lightweight development environment for Java. This software system
provides an interaction interpreter (particularly for the beginners) that
allows quick evaluation of Java expressions. For this purpose, drjava
employs dynamic java - a Java source interpreter. In addition, it uses
a standard type checker and a type system that allows for variance in
different typing rules of the system.

The reason for such high level of nesting in drjava can be attributed to
the system specific requirements (i.e., extensive type processing tasks
required for providing interactive functionality for Java expression pro-
cessing). In drjava, there are 2 anonymous classes at nesting level
6. They are defined in class JLSTypeSystem that deals with different
type processing tasks (e.g., inferencing, subtyping) of the Java language
specification. In addition, this class hosts 6 more anonymous classes
at nesting level 5, and 22 more at nesting level 4. All of them are used
for a similar purposes.

Apart from drjava, there are several software systems that comprise
anonymous classes at nesting level 4. This includes azureus - a bit-
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torrent client and netbeans - an integrated development environment
for Java. The application azureus creates various listener (e.g., down-
load manager listener, incoming message queue listener, disk manager
read request listener) of its plugin interface by nesting anonymous in-
ner classes repeatedly. Most of the highly nested anonymous classes in
netbeans are found to be used for UI functionality.

Though the nesting level of various inner classes can vary across dif-
ferent software systems depending on the system specific requirements
and the design choice of developers, it is evident (cf. Figure 6.16) that
a large proportion of inner classes are defined at nesting level one. This
suggests that developers do not tend to create highly nested program
structures with inner classes and thus avoid complexity.

6.3.6 Breadth of Functional Decomposition

What is the typical distribution profile of methods in inner classes? Do
developers maintain same profile of method distribution in both inner
and outer classes? Do developers define inner classes with substantial
number of methods?

Decomposition of Functionality - Overview

To gain an overview of the typical method distribution profiles in dif-
ferent inner classes, we computed the Gini coefficient of number of
methods hosted by those classes. We also computed the Gini coeffi-
cient of methods in outer classes to yield a comparative understanding
of method distribution in all types of classes. The resulting values are
summarized in terms of box plot (cf. Figure 6.19). The interquartile
range of method distribution in different inner classes is presented in
Table 6.15.

We observed that the Gini coefficients of methods in all classes (NOMA-
LLC) are high (with a median value of 0.64). The method distribution
in outer classes (NOMOC) also exhibit almost same pattern (as repre-
sented by the corresponding Gini coefficients). In Qualitas Corpus, the
median values of Gini coefficient of the methods in different classes ex-
hibit a relation like NOMALLC > NOMOC > NOMNC > NOMMC > NOMAC
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Figure 6.19: Boxplot of Gini coefficient of number of methods in dif-
ferent classes of the software systems in the Qualitas Corpus.

Table 6.15: The interquartile range (IQR) of the Gini coefficient (GC)
of method distributions in different inner classes

The interquartile range (IQR) of method distributions (NOM) in inner Classes
Class Category GC (Q3 - Q1) Interquartile Range (GC)
All Classes 0.68 - 0.60 0.08
Outer Classes 0.66 - 0.58 0.08
Nested Top Level Classes 0.62 - 0.48 0.14
Member Classes 0.52 - 0.38 0.14
Local Classes 0.39 - 0.00 0.39
Anonymous Classes 0.28 - 0.09 0.19

(cf. Figure 6.19). As only few software systems employ local classes,
we consider method distribution in local classes is not representative
enough to make any conclusion.

As nested top level classes are just like top level classes but nested, they
may comprise varying degree of methods - resulting in a distribution
close to outer classes. This indicates that developers use top level and
nested top level classes in a similar fashion (in terms of functionality
decomposition). The least Gini coefficients of methods in anonymous
classes further indicates that anonymous classes employ almost equal
number of methods.
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As inner classes facilitate functionality implementation of their respec-
tive enclosing classes (i.e., act as helper classes to address particular
issues), we may expect a more equitable distribution pattern of meth-
ods in inner classes when compared to the distribution pattern of outer
classes. As shown in Figure 6.19, the Gini coefficient of different inner
classes confirms this.

However, there are some software systems in the Qualitas Corpus that
comprise small number of inner classes (less than 20), and therefore
result in a very high (above 0.85) or a very low (below 0.2) value of Gini
coefficient of methods. These software systems include jasml, javacc,
jparse, and cobertura. These software systems can be considered as
exceptions.
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Figure 6.20: Number of methods* in different classes of the Qualitas
Corpus (a) Outer classes, (b) Inner classes. (*Number of methods = 11
meansmore than 10methods. X axis represents number of methods in
a given class and Y axis represents corresponding number of classes.
X axis is sorted based on the proportion of methods - higher to lower.)

Typical Number of Methods in Different Inner Classes

The above inequality-based analysis of methods informed us the nature
of method distribution in inner classes. We do not know yet how many
methods are typically employed in inner classes. For this reason, we
counted number of methods in different classes of the software systems
of the Qualitas Corpus. An overview of number of methods in inner and
outer classes is presented in Figure 6.20.
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We observed that developers define outer classes with a varying degree
of proportion. About 78% of the outer classes comprise methods rang-
ing from 0 to 10. The rest of the classes (22%) define more than 10
methods. On the other hand, developers define a substantial propor-
tion (59%) of inner classes with a single method only.
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Figure 6.21: Method count in different inner classes* (a) Nested
top level classes (b) Member classes (c) Local classes (d) Anonymous
classes (* Method count = 11 means more than 10 methods. X axis
represents number of methods in a given class and Y axis represents
corresponding number of classes. X axis is sorted based on the pro-
portion of methods - higher to lower.)

The number of methods (NOM) can be used as an indicator of size
(though NOM may not represent the actual size). The few number of
methods in a class therefore may imply that developers tend to limit the
size of inner classes. But which specific type of inner classes comprise

158



Chapter 6. Inner Class Analysis

few number of methods? To answer this question, we investigated the
number of methods of each different type of inner classes (i.e., nested
top level, member, local, and anonymous classes).

Figure 6.21 shows that the most inner classes comprises only a few
methods. All four types of inner classes comprise substantial propor-
tion of inner classes that comprise only single methods. The proportion
of anonymous classes that contain a single method follows the Pareto
principle [159] as more than 80% anonymous classes comprise only
one method and the rest contains more methods (cf. Figure 6.21(d)).

Apart from single method comprising inner classes, we observed that a
significant proportion of inner classes do not contain anymethods at all.
What is the nature of suchmethods? To facilitate the analysis of method
distribution in inner classes, we divide them into three categories based
on the number of methods they contain:

• Inner Classes Without Any Methods

• Inner Classes With a Single Method

• Inner Classes With More Than One Method

Inner Classes Without Any Methods

Inner classes that do not define any methods at all usually contain
constructors or instance initializers to initialize objects. We found in
jruby, for example, a method free anonymous class that is used for
environment configuration purpose (e.g., set current directory) through
initialization of associated instance.

However, the use of method free inner classes in the software systems
of the Qualitas Corpus is limited. The high proportion depicted in Fig-
ure 6.22(a) is due to few inner classes in the corresponding software
systems. For example, jasml shows 100% as a result of few inner classes
(7) in it. The median of the number of inner classes that do not contain
any method is 18.
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(a) Inner classes that are method
free (ICMF)
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(b) Inner Classes containing single
method (ICSM)

Software Systems - Sorted by IC Count - Ascending - Left to Right

IC
 M

et
ho

d 
C

ou
nt

 >
 1

 (%
)

0
20

40
60

80
10

0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

(c) Inner classes with two or more
methods (ICTMM)

Figure 6.22: Proportion of three types of Inner Classes: Method free,
Only one method and More than one methods in Qualitas Corpus

On the other hand, two software systems (i.e., Fitlibraryforfitness and
nakedobjects) comprise 333 and 256 (i.e., 63% and 36%, respectively)
method free inner classes. These software systems, however, use mock
objects supported by available mock object library (e.g., jmock6) and
unit testing framework (e.g., junit7) for test automation tasks (i.e., test-
driven development). The purpose of using inner classes without any
method include supporting such task (e.g., creation of mock object).

6www.jmock.org
7www.junit.org

160



Chapter 6. Inner Class Analysis

Inner Classes With a Single Method

A single method in an inner class suggests one particular focus of that
inner class. In Qualitas Corpus, a substantial proportion of inner
classes (median 95) employ single methods only (cf. Figure 6.22(b)).
Even in case of software systems that employ extensive inner classes
(more than 1000, for example), the proportion of single method inner
classes ranges from 45% to 82%. These include the two largest soft-
ware systems, eclipse (13,985 inner classes) and netbeans (19,036 in-
ner classes) that have 64% and 59% single method inner classes.

Inner Classes With More Than One Method

Apart from method free or single method inner classes, the third cat-
egory includes inner classes that comprise two or more methods. As
depicted in Figure 6.22(c), almost all the software systems employ a
substantial proportion of inner classes that comprise two or more meth-
ods. This indicates that the size of the host inner classes are somewhat
large (though NOM may not represent the actual size). Do developers
employ inner classes with extensively high number of methods?

We found that there are inner classes that comprise a substantial num-
ber of methods. Figure 6.23 depicts the distribution of inner classes
that have at least 10 methods. The maximum number of methods in
different inner classes is quite high (NC=137, MC=189, LC=13, AC=85).
Though such method-rich inner classes are not that frequent in their
occurrence (i.e., less than 200), it would be intriguing to know why
developers define such inner classes.

We found jre to employ a nested top level class that contains 137 meth-
ods. The class is concerned with graphics painting tasks (e.g., painting
background of menubars and labels). The application cayenne contains
a member class that employs 189 methods. The class is a final wrapper
class (that includes mostly getters, predicates, etc.) and concerned with
database functionality. Netbeans employ a local class with 13 methods.
The application azureus employ an anonymous class that contains 85
methods. Most of the methods are getters, setter, and predicates.
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Figure 6.23: Maximum number of methods found in different inner
classes of the software systems in the Qualitas Corpus. X axis repre-
sents number of methods in a given inner class, and Y axis represents
corresponding number of classes.

Table 6.16: The maximum number of methods in inner classes in 5
largest inner class employing software systems (starting from top of
list) of Qualitas Corpus

Software Systems Max. NOM in NCs Max. NOM in MCs Max. NOM in LCs Max. NOM in MCs
netbeans 95 97 13 40
eclipse 85 47 10 42

jre 137 60 3 17
azureus 72 27 10 85
jboss 44 51 2 20
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Based on the investigated software systems, we conclude that develop-
ers structure functionality using inner classes by defining fewer number
of methods (when compared to number of methods in outer classes).
Though there are some inner classes with a substantially high num-
ber of methods (presented in Figure 6.23), these inner classes can be
considered as exceptions.

6.4 Summary

In this chapter, we investigated how developers use the concept of in-
ner classes in Java-based software systems. Our observations revealed
some insights into the state of current software development practices
using inner classes. We summarize the key observations below.

• Developers use the notion of inner classes with a varying degree
(ranging from 0% to 80%) in the software systems of the Qualitas
Corpus. But the variants of inner classes (i.e., nested top level,
member, local, and anonymous) are not used evenly. We observed
a high use of all of them except the local ones. The underlying rea-
sons could be that developers do not consider local classes useful
in solution design. Whatever the reason is, the rare use of the con-
cept of local class indicates a limited utility in Java-based software
development, which in turn may merit its removal (or deprecation)
from the Java language.

• When developers structure solutions using inner classes, they con-
fine them in a relatively few number of host classes. The Gini coef-
ficient of inner classes in most of the software systems in Qualitas
Corpus is above 0.90, which indicates their highly uneven distri-
bution profile. Such distribution is also evident across different
domains (e.g., database, middleware), suggesting that the use of
inner classes in Java-based software systems is domain-agnostic.

• Developers do not use inheritancemuch when defining inner class-
es. Yet, some software systems comprise inner classes that have
relatively high value (up to 10) of DIT (depth in inheritance tree).
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Such high DITs are often observed due to machine generated in-
ner classes, and also implementation of GUI functionality. How-
ever, we found that only a few interfaces and super classes (of
Java standard library [17]) are being repeatedly implemented and
extended, respectively.

• Most of the inner classes are nested at level one. In only a few
instances (less than 5 classes in entire Qualitas Corpus), we ob-
served the nesting level 4 and higher. This finding suggests that
developers do not tend to write highly nested code, and thus show
a tendency to avoid complexity. In other words, they tend to comply
with the advices (e.g., [95]) to avoid deep nesting, and thus con-
tribute to better code readability - a key factor in software mainte-
nance [178].

• A substantial proportion of inner classes comprises single meth-
ods only. In case of anonymous classes, this proportion follows the
Pareto principle [159]. This suggests that developers may not in-
tentionally make code clumsy, rather it is mandated by framework
(e.g., SAM types). Therefore, the proposed lambda expression that
targets SAM types could help developers to write program code for
same functionality more concisely. Thus, readability of resulting
program code may be improved.
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Conclusions

Understanding developer behaviors and decisions in formulating solu-
tion designs using programming language features, and also their ten-
dencies in adhering to associated recommendations has been an active
area of research (e.g., [74, 77, 93]). But our knowledge in this context
still remains somewhat sketchy. In this thesis, our objective was to en-
rich our current understanding on developer tendencies in adhering to
available recommendations in particular, and their practices in using
programming language features in general.

To achieve our objective, we studied developer behaviors in using a set
of features (i.e., fields, properties, and inner classes) of the Java pro-
gramming language. Based on the fact that developer behaviors are
imprinted into the software systems they produce, we conducted an
empirical study on the Qualitas Corpus - a collection 106 open source
Java-based software systems. We collected necessary software metrics
data and analyzed them with statistical techniques (e.g., frequency dis-
tribution analysis and inequality analysis). We built descriptive models
of software metrics to gain an understanding of developer behaviors,
described our observations, and summarized the lessons learnt.
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The key observations of this work can be summarized as below:

While using programming language features, developers tend
to adhere to coding conventions, design guidelines, and ad-
vices they are provided with. They enjoy the flexibility (in us-
ing language features) offered to them and exhibit certain sta-
tistical consistency in structuring solutions using language fea-
tures. Though available features govern developer design choic-
es, they may not use a programming concept unless it offers a
significant value.

In this chapter, we revisit the contributions of this work (as presented
in chapter - 1) and discuss them in section 7.1. We then present, in
section 7.2, the implications of the outcome of this work. Finally, we
discuss in section 7.3 the possible future directions that this work can
take.

7.1 Contributions and Discussion

Developers tend to adhere to recommendations

We showed that developers tend to follow advices, design guidelines,
and coding conventions associated with the fields, properties, and inner
classes of the Java programming language.

• Fields

We confirmed that fields are mostly defined as private (presented
in Chapter 4, Section 4.3.1). This indicates developer tendencies
in adhering to the information hiding principle [162] and advices
(e.g., all data should be hidden within its class [183], don’t expose
state if you don’t have to [12]). Though there are exceptions, the
extent of violations is minimal. When developers violate recom-
mendations and expose states (either deliberately or accidentally)
by defining fields with non-private visibility modifiers, they take
advantages (as represented by external access) only in few cases.
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The exposed field hosting classes and exposed fields accessing
classes exhibit similar distribution patterns (presented in Chap-
ter 4, Section 4.3.4) - an emergent property visible at the entire
Qualitas Corpus level (rather than individual system level). This
indicates that there exists some form of relation between exposing
fields and accessing them.

• Properties

In case of properties, contrary to conventional belief, we found that
they are neither commonplace nor evil. There are many advices
regarding the use of getter and setter methods in solution design,
both in favor of (e.g., do not change object’s state without going
through its public interface [183]) and against them (e.g., they cir-
cumvent private visibility modifiers and thus expose an object’s
state [69, 105, 106, 114]). Given such advices, we observed that
developers proactively employ them in order to satisfy specific do-
main requirements, not just to circumvent data encapsulation. We
observed that developers do not always accompany private fields
with getter and setter methods. This is evident by scattered distri-
bution of, and weak correlation between, private fields and pure
getter and setter methods, discussed in Chapter 5, Section 5.3.3,
in most of the software systems in the Qualitas Corpus.

The purpose of using of getter and setter methods in Java-based
software development is not just fabrication of read and write ac-
cess, respectively. We observed that when developers define such
methods, they do not always merely manifest read/write access,
they implement some additional functionality in those methods.1

Such practice is observed more in case of storing fields as evident
by more occurrence of real setter methods than real getter methods
- discussed in Chapter 5, Section 5.3.2).

1Whether such practices (i.e., implementing additional functionality in getter and
setter methods) are good or bad has not been investigated. But considering the main-
tenance issue, a method should do what it is supposed to do (e.g., method setColor
should set the field Color only).
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• Inner Classes

Given advices regarding the use of inheritance, both in favor (due
to code reuse facility) and against (due to complexity associated
with deeper classes in the inheritance hierarchy [192] and result-
ing maintenance difficulty [131]), we observed that developers do
not use inheritance much when defining inner classes (discussed
in Chapter 6, Section 6.3.4). Though some software systems com-
prise inner classes that have relatively high value (up to 10) of DIT,
such cases are very rare and often due to machine generated in-
ner classes and implementation of GUI functionality. This finding
suggests that developers tend to limit the use of inheritance while
defining inner classes.

Given the debate concerning the reduced code readability induced
by anonymous inner classes due to their clumsiness and bulky
syntax [184], we found that most of them comprise a single method
only (with a profile following the Pareto principle [159] - presented
in Chapter 6, Section 6.3.6). This suggests that developers may
not intentionally make code clumsy, rather it is an artifact of the
induced application or framework requirements (e.g., SAM types).
Besides, developers tend to comply with the advices (e.g., [95]) to
avoid deep nesting, thus show a tendency to avoid complexity, and
contribute to better code structure - a key factor in software main-
tenance [178].

However, the violations of recommendations, particularly involving the
use of fields and properties, raise questions why developers do not ad-
here to given guidelines perfectly. Our observations, however, do not
confirm that developers intentionally violate given advices or the ad-
vices are not worth following. One reason of violation of advices could
be the associated development constraints. It is likely, for example, that
time pressure can enforce priority on getting things done (i.e., produc-
tion of just functional code, rather than code that is both functional
and perfectly complies with available recommendations). Further in-
vestigation is required to confirm such hypothesis.
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Developers, while using language features, enjoy the flexibility of-
fered to them

We demonstrated that developers employ Java’s property mechanism, a
feature supported by code convention, as they desire. As a result, a va-
riety of patterns emerge. We identified a catalog of 10 distinct patterns
(described in Chapter 5, Section 5.2.1). These patterns capture differ-
ent definitions of properties developers employ in practice. For example,
a getter method is classified into three categories: pure, real, and vir-
tual getter methods. While the pure getter method implement only read
access to associated instance field, real and virtual getter methods are
involved in implementing additional functionality.

An aspect of concern, however, is that developers often define methods
with get- and set-semantics, but are not designated as such. We call
them getter-like and setter-like methods. In addition, developers also
define predicates (e.g., isTrue()), but with non-boolean return types.
Such practices confirm violations of coding conventions and also indi-
cates that violation may occur due to flexibility. However, the variety
in employing the property mechanism indicates that developers utilize,
according to their intentions, the flexibility of defining properties of-
fered by the Java programming language (unlike built-in support for
properties available in other languages like C#).

Developers exhibit certain consistency in using language features

We showed that there exists a certain statistical consistency (as repre-
sented by a small and narrow bounded region of computed Gini co-
efficients) among the developers in employing language features. The
distribution profiles of the studied language features are highly concen-
trated in Java-based software systems, suggesting a consistent practice.
We identified typical ranges (in terms of computed Gini coefficients and
corresponding Lorenz curves of the distribution of studied features -
presented in Chapter 4, Section 4.3.2; Chapter 5, Section 5.3; Chap-
ter 6, Section 6.3.3) within which developers organize solution design.2

2This observation provides support for the notion of “decision frame”, formulated
by Tversky and Kahneman [210], that states that decision makers (e.g., developers)
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The recorded IQR of Gini coefficients of different aspects of studied
features (e.g., fields with various visibility modifiers, getter and setter
methods, and various inner classes) can serve as reference to indicate
accepted practice in organizing solutions using the associated language
features. Though any deviation from such observed region does not
necessarily imply a problem, its boundededness may be an indicator of
some form of cognitive preferences of developers. In addition, any un-
usual Gini coefficient computed for a given feature in a software system
can signal its (structural) difference from typical Java-based software
systems.

However, even though developers concentrate the studied language fea-
tures in a relatively few number of classes in general, we noticed that
the concentration profiles of some of those features (e.g., getter and
setter methods) are often negatively related to their proportions pro-
files. That is, the more features are employed in a software system,
the more they are dispersed across the software system. This suggests
that there is a tendency in developers to work with small and manage-
able classes, causing the distribution of features to be dispersed across
more classes. This indicates that some sort of God-like aversive design
strategy is practiced by developers.

Developers avoid some language features

We presented evidence (in Chapter 6, Section 6.3.1) that the concept
of local classes are being used very rarely in the software systems of
the Qualitas Corpus. Such rare use suggests that this concept is not
well-accepted by developers, and also indicates that developers may not
use a programming concept unless it offers significant value. The rare
use of local classes, however, merits an exclusion of this concept from
the Java programming language.

proactively organize solution design within well-established boundaries defined by
cultural environment and personal preferences.
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Support for language feature modification proposals

This work presents empirical evidence to support potential change in
Java language features. We demonstrated that developers make use of
SAM types substantially. If similar functionality could be implemented
with more concise yet effective language constructs, developer burden
could be substantially scaled down. As SAM types are one central as-
pect of lambda expressions [20], the proposals (e.g., [182]) suggesting
anonymous classes to be replaced with lambda expression would ben-
efit developers to write more concise and readable program code.

Classification of the software systems in the Qualitas Corpus

We classified the software systems in the Qualitas Corpus. We identi-
fied 12 major domains (e.g., middleware, database, games), based on
the nature of functionality provided by these software systems. For
example, the software systems apache derby and hsqldb are similar
in nature as they offer data management functionality (e.g., data ac-
cess, update, persistence). We grouped such software systems in the
database domain.

The classification, presented in Chapter 3, Section 3.2.2, offers several
benefits. For example, the classification can help maintaining diver-
sity of the software systems in the Qualitas Corpus, and can also as-
sist studies that involve domain-specific characterization of developer
behaviors in using programming language features in Java-based soft-
ware systems.

However, we do not claim that this classification is perfect. The primary
purpose for this classification was to serve as a vehicle for investigat-
ing developer practices regarding the use of programming language fea-
tures. Other interpretations are possible, and they may give rise to a
refinement of this classification.
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Support for study of programming language features

We contributed to the research community an extensible framework
for metrics extraction and processing: jCT - a Java Code Tomograph
[139]. It can be used to assist studies of developer behaviors in using
programming language features, and also studies that involve software
metrics data. Though jCT is built for Java, a similar approach (see
Appendix B) can be adopted to study other languages (e.g., C#). In
addition, jCT is equipped with different inequality measures (e.g., the
Gini coefficients and Lorenz curve), as recommended by Vasa [216], to
support inequality-based software analysis.

7.2 Implications

In this section, we present some of the implications of this work. These
are (i) Impact on programming language design, (ii) Impact on educa-
tion, (iii) Understanding developer behaviors, (iv) Recorded Gini coeffi-
cients as reference to the nature of language features distribution in
typical Java-based software systems, (v) Supporting inequality-based
software analysis, and (vi) Supporting software quality assurance.

Impact on Programming Language Design

A programming language has an impact on the developer productiv-
ity and maintenance. According to Scott [187], “programming language
feature has a huge impact on programmer’s ability to write clear, con-
cise, maintainable code, especially for very large systems”. Consider an
example of two programming languages, C++ and Java. Though both
of them are object-oriented in nature, they offer different sets of lan-
guage features, and therefore contribute in different ways to developers
effectiveness. For example, investigating the productivity rate of pro-
grammers, a study [170] found that using Java in solution design yields
significantly higher productivity rate than C++. This indicates that it is
the set of language features that determines developers capability.
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To remain effective, a language must evolve and be equipped with fea-
tures that reflect developers intentions. According to Shaw [190], “pro-
gramming languages and methodologies evolve in response to the per-
ceived needs of software designers and implementors”. Due to the lacks
of proper mapping of developers intentions, the resulting codes often
become clunky, bloated, or smelly [91].

Language designers spend much of their time thinking about features
[91]. The outcome of this work may assist them to think about both
studied features and designing emerging features. For example, know-
ing that developers substantially use SAM types and rarely use the con-
cept of local classes, language designers may consider to spend much
attention to introduce more simple, yet effective language constructs for
SAM types, on the other hand, they can decide to ignore (or deprecate)
concepts like local classes.

Impact on Education

Software engineering education aims at delivering knowledge on tools
and techniques for building software systems. For this purpose, soft-
ware engineering courses include content on various aspects of soft-
ware development life cycle (e.g., systems analysis, solution design, and
implementation using programming language) that assist students (of-
ten novice) to become adept in software development practices. But it
is found that turning novices into experts is a non-trivial task due to
the given (limited) time frame [230].

Moreover, there is a persisting gap between software engineering educa-
tion in academia and software development practices in industry. Both
have some common and varying attributes. Mills [150] identified some
commonality and variability of software engineering education both in
industry and academia. To enrich software engineering education in
academia, the involvement of industry practices could be useful.

For this purpose, educators in academia can use the observations of
this thesis to enrich course content of software engineering modules
to better reflect developers practices. In addition to the knowledge on
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programming language constructs (e.g., control structure, data struc-
ture, exception handling, and memory management), these modules
can be decorated with knowledge on what developers actually do while
formulating a solution using language features.

Thus, the outcome of this work may assist software engineering stu-
dents to gain an insight into application of programming language fea-
tures in contemporary Java-based software systems. For example, know-
ing that developers tend to follow experts advices may encourage novice
students to adhere to advices, too. Moreover, knowing that private fields
are not always accompanied by getter and setter methods may encour-
age students not to circumvent visibility modifiers through the prop-
erty mechanism in Java. Another example could be shallow nesting
structure of inner classes (i.e., most of the inner classes are not nested
much) may discourage students to create highly nested program struc-
ture. Thus, software engineering students may become familiar with
accepted practices in using language features as part of their educa-
tion in academia.

Understanding Developer Behavior

Understanding the human factor in software development, particularly
developer behaviors and their use of associated tools (e.g., program-
ming languages) has been an important area of research. This has been
demonstrated by significant related work (e.g., [36,64,86,87,127,136,
193,196,226,236]) that covers different human-centric aspects of soft-
ware development and programming (e.g., cognitive issues in software
development, psychological perspective of programming, and program-
ming language features).

The outcomes of this work may assist researcher as it provides us with
developer behavior in terms of structural organization of features in
software systems that they built. Though developer behavior is not di-
rectly articulated through interaction with developers, this work presents
their natural choices as manifested in, and inferred from, the product
they built. More precisely, developers exhibit, while organizing solu-

174



Chapter 7. Conclusions

tions with language features, certain consistency (as represented by
the narrow bounded regions of Gini coefficients). We attributed such
consistency to some form of cognitive preferences of developers. As cog-
nitive workload and comfort are related [36], such observed consistency
may be considered as cognitive comfortability of developers, which im-
plies that developers employ language features the way they are more
comfortable with.

Researchers interested in investigating the psychological perspective of
programming may benefited from the outcome of this work. They may
correlate cognitive aspects of developers in association with some re-
sults (e.g., narrow bounded Gini coefficients) to uncover any potential
relation between what developers think regarding solution design and
what they actually do in practice. Moreover, observations like devel-
opers enjoy the flexibility in using language features may be useful to
study their mental model from psychological perspective than possible
today.

Supporting Inequality-based Software Analysis

Inequality-based software analysis is a recently emerged trend in study-
ing and reasoning about contemporary software systems. Researchers
employ inequality measures in their studies (e.g., [140,216]) to under-
stand different aspects (e.g., use of language feature) of software sys-
tems. But we have little tool support for such purpose, and therefore
our capability in conducting empirical studies becomes somewhat re-
stricted. According to Dijkstra [67], “the tools we use have a profound
(and devious) influence on our thinking habits, and, therefore on our
thinking abilities”.

The methodology followed, and framework (jCT) devised, in this work
may assist researchers interested in similar type of study. We demon-
strated how developers practices in using language features can be rea-
soned about through the Gini coefficient. In addition, unlike many
other tools (e.g., JHawk [223], SonarJ [14], Mutations [9]), jCT offers
support for inequality-based software analysis.
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Supporting Software Quality Assurance

The coding standards and guidelines, if followed appropriately, can re-
duce overhead involving various issues associated with program code
(e.g., maintainability, correctness, readability). Such guidelines are, in
general, suggestive, and therefore developers may or may not comply
with them. But considering the resulting benefits of complying with
such guidelines, it is expected that developers should follow them.

We demonstrated that developers exhibit a tendency to follow the stud-
ied coding standards with minimal violations (similar to the compe-
tent programmer hypothesis [161] that states a competent programmer
write code that is close to being correct). The findings of this work
present empirical evidence to support it. For example, though develop-
ers define properties by adhering to the Java coding conventions [10],
in limited cases they do not follow such conventions which is evident
by the existence of getter-like and setter-like methods in the software
systems of Qualitas Corpus.

Software managers, however, can utilize above observations (i.e., devel-
opers do not perfectly follow advices) to devise any potential corrective
measures. For example, one measure could be initiating action either
to ensure perfect adherence to coding guidelines or to improve quality
assurance activities (e.g., code maintainability) based on the fact that
some code, though functional, are not structured as expected. Exist-
ing tools and IDEs can be enriched with rules that monitor such cases.
For example, when developers ignore conventions much, IDEs should
automatically detect such cases and warn developers. This would be
useful as higher proportions of violations (e.g., getter-like and setter-
like methods) may be problematic considering the maintenance issues
(difficult to quickly identify the purpose of such methods).
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7.3 Limitations and Future Work

In this section, we describe the limitations of this work and some di-
rections of future work. These are grouped into (i) Beyond Java, (ii) In-
corporating developers feedback with language feature usage patterns,
(iii) Relating software quality attributes with language features distribu-
tion patterns, (iv) Language features usage patterns in evolving software
systems, (v) Model building, (vi) Refinement of the classification of prop-
erties, and (vii) Refinement of the classification of the software systems
in Qualitas Corpus.

Beyond Java

Our primary focus in this thesis was to investigate the language features
(particularly, fields, properties and inner classes) usage patterns of the
Java programming language. We did not explore different programming
languages for the same purpose. We consider this as one of the major
limitations of this work as it resists us to portray a comparative scenario
of similar features usage profile in different contexts (e.g., C#).

However, we speculate that a study on other object oriented program-
ming language would result in similar observations. If not, the potential
reasons include the semantic variations offered by different languages
(e.g., C++, C#). It would be worthwhile to explore this research avenue
further as it provides us with the opportunity to compare features us-
age patterns as practiced by the developers of different programming
languages.

Moreover, a longitudinal study focusing on the comparative analysis of
the underlying factors that influence feature usage patterns of a diverse
set of programming languages can uncover the effectiveness of particu-
lar features. This can guide language designers to address the potential
issues to equip the emerging languages with better and more focused
language semantics.
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Incorporating Developers Feedback with Language Feature Usage
Patterns

To understand programming language feature usage patterns and de-
velopers preferences in employing different features while fabricating
solution design, we completely relied on the open source software sys-
tems that the developers produce. We did not involve any software de-
velopers directly in our study to understand their viewpoints regarding
the application of different programming language features during soft-
ware development.

Therefore, it would be another interesting avenue of research to investi-
gate what actually motivates them while employing different features of
the adopted programming language. This can be accomplished through
different means (e.g., survey, interview, questionnaires) that allow us
to gain more direct feedback. In addition to the involvement of the
developers only, it would be worth capturing both the technical and
non-technical aspects of the entire development context. For example,
the development environment, associated cultural, psychological and
social factors (e.g., interaction with team members), and development
pressure can be considered to yield a better insight into the driving
factors of programming language feature usage patterns.

Relating Software Quality Attributes with Language Features Dis-
tribution Patterns

The investigations of the correlations between the programming lan-
guage features usage patterns and software quality attributes (e.g., read-
ability, maintainability, reliability, testability) is another potential av-
enue of research. Though these issues are addressed in different stud-
ies [42, 65, 98, 171], the impact of fields, properties and inner classes
on software quality remain mostly unexplored. An extensive investi-
gation addressing the quality aspects of these features can be useful.
Moreover, a longitudinal study focusing on uncovering the associations
of software quality attributes with extreme distributions patterns (i.e.,
highly even or highly uneven) of features can result in valuable feedback
for both design and quality assurance activities in software engineering.
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Language Features Usage Patterns in Evolving Software Systems

Investigation of the programming language features usage patterns in
the evolving software systems is another potential avenue of research.
It would be worth inspecting how the usage patterns of fields, prop-
erties and inner classes evolve in successive releases of software sys-
tems. Such study can reveal useful insights into the effect of language
features in supporting software evolution. For example, the evolving
patterns of data storage and retrieval mechanisms fabricated in the
different releases of software systems can provide us with insights to
monitor how developers manage data functionality throughout the life-
cycle of software systems.

Model Building

There is a growing interest in Bayesian analysis (e.g., [57,200,213,232])
of different aspects of quality of software systems. For example, Koten
and Gray [213] developed a maintainability prediction model for object-
oriented software systems. The construction of the model is based on
software metrics data (e.g., described in [56, 131]) that captures dif-
ferent aspects of object-oriented concepts. Researchers also increas-
ingly adopting Neural network based techniques [101, 113, 119, 199].
For example, Quah and Thwin [176] applied neural network on object-
oriented metrics (including the CK metrics [56]) for software quality es-
timation. Such models can be built based on the fields, properties,
and inner classes measures, and also correlation can be established
between their Gini coefficients and quality attributes (e.g., reliability,
maintainability).

Refinement of the Classification of Properties

We classified getter and setter methods into 12 different types that cap-
ture their different variants. This classification can be refined further
by including various types of properties (e.g., bound properties, dy-
namic properties, vetoable properties). It would be interesting to see
how often they are being used in Java-based software development.
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Refinement of the Classification of the Software Systems in Qual-
itas Corpus

A potential avenue of further research would be refining the classifica-
tion of the software systems in Qualitas Corpus. We classified them
in 12 categories (e.g., IDE, SDK). In our classification, there are some
domains (i.e., middleware and tools) that comprise comparatively more
software systems than other domains (e.g., database). Such domains
might be split into sub-domains.

Besides, it would be worthwhile to consider the orthogonal system char-
acteristics of the constituent software systems in Qualitas Corpus and
place some of them into multiple categories (e.g., pmd, currently clas-
sified as testing tool, has also significant characteristics that warrant a
secondary classification: IDE).
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Appendix A

Research Questions

We addressed various research questions in respective chapters. We
present them in this section to gain an overview of all of them together.
Research questions RQ1 to RQ5 are addressed in Chapter - 4 (Field
Analysis), RQ6 to RQ9 in Chapter - 5 (Property Analysis), and RQ10 to
RQ14 in Chapter - 7 (Inner Class Analysis).

• RQ1: What is the typical field distribution profile that developers
usually practice? Do they follow available recommendations?

• RQ2: Does field distribution vary across different domains (e.g.,
middleware, database)? Do the results of RQ1 hold at domain
level?

• RQ3: Do developers define fields in all classes in Java-based soft-
ware systems? What is the typical distribution of field hosting
classes and field inheriting classes?

• RQ4: Given a software system, are the volume and distribution of
its fields correlated?

• RQ5: What is the typical profile of field exposure in Java-based
software systems? Do developers confine exposed fields in a few
classes or do they disperse them in almost every field hosting
class?
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• RQ6: What is the typical distribution profile of properties in Java-
based software systems? Do developers adhere to the Java-specific
coding conventions and associated guidelines while formulating
solutions using getter and setter methods?

• RQ7: Is there any impact of the underlying problem domain on
the use of getter and setter methods?

• RQ8: Do developers define getter and setter methods when they
define private fields?

• RQ9: What is the distribution of ratio of getter and setter methods?

• RQ10: What is the typical distribution profile of inner classes in
Java-based software systems? Does the use of inner classes vary
across different domains (e.g., database, middleware)?

• RQ11: Do developers confine the use of inner classes to few classes
only?

• RQ12: Do they use inheritance substantially to define inner classes?

• RQ13: Do they create highly nested abstractions using inner classes?

• RQ14: What is the typical distribution profile of methods in inner
classes? Do SAM types occur with a high frequency?
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jCT - Java Code Tomograph

B.1 Background

“Like physics, medicine, manufacturing, andmany other disciplines, soft-
ware engineering requires the same high level approach for evolving the
knowledge of the discipline; the cycle of model building, experimentation,
and learning” [31]. To facilitate experimentation, software engineering
literature provides us with different guidelines [31,33,34,116,169,197,
229] that assist us to devise and conduct experiments to evolve the
knowledge in field.

Measurement is the fundamental element here [40,56,77]. According
to DeMarco [66] “You cannot control what you cannot measure". To bet-
ter understand the process being used to build a software system and
the software system itself, we can identify a set of characterizing prop-
erties (or attributes), define associated software metrics, and perform
an empirical analysis to interpret the data [40, 81]. These measure-
ment activities can enable us to improve development processes and
practices (e.g., [56,140,217]).

But conducting the desired measurement activity is a non-trivial task.
It entails a number of elements that provide us with the fundamental
ingredients for accomplishing a desired measurement task. These in-
clude the program codes that are intended to be measured, and match-
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ing tool supports to assist the measurement work. The former serves
as the basis of meaningful information that assists us to bridge po-
tential gap in knowledge, and the later provides us with the necessary
means to accomplish the task mining information from the program
codes. Though many different additional resources (e.g., data process-
ing, aggregation, interpretation and reporting tools) can be involved in
a measurement task, the experimental program code and data mining
tools are the primary elements in studies entailing measurement tasks.

But the lack of availability and appropriateness of matching tool sup-
port often stand as barriers in conducting desired measurement and
thus limits our capability. According to Tempero et al. [77] “barriers
to measuring code and understanding what the measurements mean in-
clude access to code to measure and the tools to do the measurement”.
Elimination of such barriers can increase our capability in conducting
measurement effectively, and assist us to enrich our understanding on
developers practices in software development and also the state of re-
sulting software systems. But how can we eliminate such barriers?

Recently, researchers contributed different curated repositories of pro-
gram code. For example, Tempero et al. [77] contributes the Qualitas
Corpus and Vasa et al. [218] provides Helix. Both offer over 1200 re-
leases of more than 100 open source Java-based software systems. But
a curated collection of code is just one side of a coin. We need matching
tool support for extracting desired metrics data from such repositories
of code. Without appropriate tool support, it is difficult to capitalize
the benefits arising from the available curated code repositories (e.g.,
Qualitas Corpus, Helix).

The set of functionality provided in a data mining tool is determined by
the definition of software metrics that are embedded into the blueprint
of a data mining tool. These entrenched metric definitions are used
while processing experimental software systems to mine necessary met-
ric data. The more metric definitions are embedded, the more metric
can be extracted. But defining a finite set of metrics is a non trivial task
as metric definitions are evolving over time.
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Evolving Nature of Software Metrics

Software systems evolve over time [216]. As requirements are subject
to change [96], software systems need to be updated to reflect them.
According to Lehman’s first law [129], a software system becomes less
useful over time unless it is adapted continuously. As a result, they
are required to pass through a process of continuous evolution to cope
with growing demands on their functionality and usability.

The changing necessity of software systems causes not only the intro-
duction of new programming language semantics over time, but also
the corresponding design decisions of the associate developers to evolve.
The new language semantics provides us with the desired means to cap-
ture evolving necessities, and the developers employ the new semantics
to fabricate their design decisions. For example, the Java program-
ming language has evolved over time and included many different new
features. These include the concept of inner class (introduced in Java
1.1 [157]), generics and enumerations (introduced in Java 5.0).

Such evolving nature of programming language features, design deci-
sions, and requirements of software systems are among the potential
reasons that initiate new metrics definitions to emerge over time. Dur-
ing the last few decades, a variety of software metrics definition sets
have been proposed [28, 35, 55, 56, 99] in order to measure different
aspects of software systems, and also the underlying design decisions
[77,77,140,209]. Though some of them are widely used (e.g., [56]), no
set of metrics definition has yet been identified as standard, causing
software metrics to emerge over time.

Metrics Requirement in Empirical Study

An empirical study can rely on different and disjoint set of software
metrics depending on the associated objectives. We classify them into
following three categories:
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1. Existing software metrics
A study can employ only the available software metrics without
introducing any new set of metrics of its own. For example, Sub-
ramanyam and Krishnan [202] investigated the CK metrics suite
[56]- an available set of metrics, for determining software defects.

2. Combination of both existing and new metrics
A study can use both the existing metrics and define new set of
metrics based on the associated requirements. For example, Tang
et al. [205] used a combination of available metrics (i.e., CKmetrics
suite [56]) and new set of software metrics (e.g., coupling between
methods, average method complexity, inheritance coupling, and
number of object allocation) to investigate the correlation between
object-oriented design metrics and the likelihood faults.

3. New set of metrics
A study can completely introduce a new set of metrics. For exam-
ple, this work requires new sets of software metrics (e.g., proper-
ties, inner classes) to investigate developers behaviors and deci-
sions in Java-based software systems.

Either way, matching tool supports are required to extract the desired
software metrics data. While the availability of fitting tools provides
us with the means to extract desired software metrics data for goal
attainment, the lack of appropriate tool supports can substantially limit
the flexibility of necessary software metrics data mining task, and can
often prevent us to proceed (as goal attainment in an empirical study
significantly depends on available metrics data).
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B.2 Available Approaches for Metrics Data -
Mining

In software engineering literature, there are different approaches avail-
able for supporting software metrics data mining tasks. We classify
the approaches into: (i) Metrics-driven approach , and (ii) Meta model-
based approach.

1. Metrics-driven Approach

In the metrics driven approach, certain predefined metrics definitions
are embedded in tools. This approach is found to be adopted in both
open source (e.g., [2,3,8,9,23,58,115,148]) and commercial tools (e.g.,
[14,154,223]). The formers are free to use and modify as necessary and
the later are restricted by certain copyrights.

As tools built on the metrics driven approach can extract only the met-
rics they are designed for, their applicability and usability in projects
requiring slightly different set of metrics is fairly limited. Therefore,
often they may not satisfy user expectation completely.

Table B.1: Tools that rely on Metric-driven Approach

Tool Description

JMT [2] Supports two specific modes: single and multiple files processing limited
to 19 predefined metrics definitions. Does not provide any API for incor-
porating new software metrics.

JHawk [223] Jhawk comes in three flavors : stand alone application (both GUI and
Command Line) and Eclipse plugin. Provides metrics in system, package,
class and method level. Does not provide any API for incorporating new
software metrics.

Metrics [148] It is in fact a plugin for the Eclipse platform. It can compute metrics
and detect cycles in package and type dependency graph. No support for
incorporating new software metrics.

Dependency Finder [6] Primarily focused on dependency analysis but also include metrics extrac-
tion functionality. Only certain object oriented metrics can be extracted.
No support for incorporating new software metrics.

JDepend [8] Computes 9 pre-defined metrics at package level only. Does not provide
any API for incorporating new software metrics.
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Consider, for example, a snapshot of the use of property mechanism
available in Java programming language. This study requires a set of
new metrics that capture different aspects of the property mechanism
(e.g., definitions of getter and setter methods and their variants). As
available tool support does not offer the desired metrics, we can have
four potential options described in Figure B.1.
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Figure B.1: Addressing Evolving Metrics requirement in an Empirical
Study
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• Terminate the study due to the lack of available tool supports,
resulting in the objectives of the study to remain unattained.

• Develop new tools either from scratch or build the necessary com-
ponent on top of the available libraries (e.g., ASM, BCEL). The de-
cision to build tools to address research questions often becomes
infeasible as it involves a time, effort and resources. More im-
portantly, building tools often becomes orthogonal to the original
purpose of the study.

• A third potential option can be combining matching tool sets to
accomplish the desired task by merging their results together to
address the necessities. But such approach, if supported tools are
available, often limit the scope of analysis and also may not lead
to fulfilling the exact requirement of the study.

• A fourth potential option can be to use an infrastructure that pro-
vides necessary supports for incorporating new metrics definition
on top of the existing facilities provided.

Therefore, it becomes a non-trivial task to work with existing tool sup-
port when a particular study demands new set of software metrics.
Moreover, the available tools often produce differing outcomes for same
input. A recent study [134] concludes that “there are differences be-
tween the metrics measured by different tools given the same input.” and
“it (the difference) does matter and might lead to different conclusions”.

2. Meta Model-based Approach

A meta model-based approach, on the other hand, is concerned with
formulating generic (often language independent) model for metrics def-
initions. There are many different studies (cf. Table B.2) that con-
sidered the development of a common meta model using various tech-
niques (e.g., construction of relational database schema for storingmeta-
data). A common theme of such studies is once the model is con-
structed, different query languages like Object Constraint Language
(OCL), XML Query Language (XQuery), Structured Query Language
(SQL) are being used for computing desired software metrics.
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Table B.2: Meta Model-based Approaches

Example of Different Approaches
Study Description Note/Limitation
Harmer and Wilkie [97] Meta model is defined in the form of

relation database schema and met-
rics are computed using SQL.

Definingmetrics is a non-trivial task.
Complex metric (e.g., CK’s CBO met-
ric) requires embedded SQL in pro-
gram code written in C.

Baroni and Abreu [29] OCL is used to define metrics. Though design related metrics can
be expressed using OCL (on UML
class diagram), metrics that demand
implementation-specific data is diffi-
cult to define.

Wakil et al. [70] Describes an approach to express
metrics in terms of XQuery expres-
sions on UML Model.

Metrics implementation requires
complex XQuery code.

Lavazza et al. [128] Defines relational database tailored
for storing UML model data

Supports design level (i.e., UML-
based) metrics (e.g., CK metrics).

There is another family of tools [9,115] that are constructed based on a
number of light-weight meta model based libraries (ASM [46], BCEL [5],
and Javassist [53]). Though these libraries have not been designed with
metrics extraction in mind, they can be used for this purposes. For ex-
ample, while ASM is used as class file parser in JSeat and Mutations,
BCEL and ASM provide the foundations for the static Java code ana-
lyzer FindBugsTM [7]. The actual domain of these libraries is code in-
strumentation and the support for aspect-oriented programming [120].
The corresponding meta models permit them to work with real-world
systems. However, they omit some details about the underlying lan-
guage semantics that makes them less suitable for high-precision data
mining.

Moreover, the construction of a meta-model often imposes constraints
on the capability of certain tools. For example, both of JMetric [175]
and JSeat [115] employ a meta model to map to the object-oriented
language semantics of Java. The construction of the necessary model
data exceeds the available runtime memory when they attempt to parse
large software systems like Eclipse or Netbeans. In fact, an early version
of JMetric could only cope with systems containing 5,000 classes or
less. To reduce the actual memory footprint we can use some form of
caching strategy to off-load data to a persistent storage (used in the
latest version of JSeat). But this creates engineering challenges and
maintenance overheads, usually orthogonal to the purpose of the tool
itself.
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Even though the use of meta models can limit the scope of exploration,
we find them in many metrics-based software engineering approaches.
For example, Mens and Lanza [146] pointed out that language interfer-
ence can result in conflicting definitions for one and the same measure.
To steer clear of this problem they developed a graph-based language-
independent meta model for metrics definition. In this approach, nodes
represent the language entities (i.e., classes, methods, statements, meth-
od invocations, etc.), whereas edges capture the relationships between
nodes (e.g., contains, overrides, accesses, etc.). The graph-based meta
model provides three built-in generic measures (i.e., Node Count, Edge
Count, and Path Length ) that serve as the main building blocks to de-
fine, for example, object-oriented metrics. This approach allows for
reusing existing metrics extraction infrastructures even in the face of
newly emerging measures. However, this comes at a price. Many com-
plex measures (e.g., CFO or RFC [56]) cannot be expressed [146].

B.3 Our Approach

Our approach considers language features as the key to metrics extrac-
tion and processing. In this approach, language features come first,
then the necessary metrics. The model of our approach (cf. Figure B.2)
comprises three key components: (i) Taskmanager , (ii) Metric extractor,
and (iii) Language-specific parser.

Task Manager

An empirical study involving analysis of contemporary software systems
can often require system specific information. To reveal such informa-
tion, one must examine the components that constitute the core func-
tionality of a software system. But contemporary software systems, in
general, make extensive use of third party libraries. Therefore, it is nec-
essary to identify the desired set of artifacts. According to Tempero et
al. [77], “decisions need to be made regarding exactly what is going to
be analyzed”.
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Figure B.2: Multi-layered Model for Software Metrics Extraction

Deciding on what need to be analyzed is just one side of a coin. The
decision has to be reflected in the analysis process to formulate a fine-
grained experimental software artifacts. Often it becomes substantially
cumbersome to conduct large scale empirical study due to the lack of
proper means to accomplish such task (i.e., what should be included
in analysis and what should not ). It is, therefore, beneficial to have a
mechanism that can provide us with suitable set of artifacts based on
that decision.

The task manager is equipped with such mechanism. To manage dif-
ferent task-specific processes, the task manager provides the necessary
meta data for constructing task-specific data set based on task descrip-
tor (e.g., configuration file). The task descriptor cooperates with the
task manager to identify the core components of a software systems.
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Metrics Extractor

TheMetric Extractor adopts a class-by-class metric extraction approach.
It accomplish its task in two steps: Firstly, it scans each class available
in the data set, and then it applies the desired measures on each of
them. In order to perform the first step, the Metric Extractor uses a
Class File Parser (cf. Figure B.3).

Task 
Manager

Class File 
Parser

Metrics 
Extractor

Figure B.3: jCT’s main components and their interaction.

Language-specific Parser

The semantics of a language offers the most precise representation
[137]. Therefore, we decide to use the semantics of a language (see
Figure B.3) as the source of metric data mining. The semantics can be
exploited from either the source code or compiled code of the software
systems. In the first case, the source must be available to the user in-
volved in data mining. This approach often becomes difficult unless the
software artifacts are non-commercial, open source products. Thus, it
restricts the selection of data set for analysis. An alternative way is to
use the compiled code (which should be available regardless commer-
cial interest of the artifacts) of the desired software artifacts. To parse
compiled code of given language, we employ a language specific parser.
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General

Fully-qualified class name
Super class name
Interfaces implemented
Modifiers
Constant Pool: numeric, string, and type constants
Annotation*
Attribute*

Field*
Modifiers, name, and type
Annotation*
Attribute*

Method*
Modifiers, name, return type, and parameter types
Annotation*
Attribute* (including Java IL-bytecode)

Table B.3: Structure of a compiled Java Class [47] (* indicates cardi-
nality ≥ 0).

The Class File Parser is responsible for parsing a given class file, and
providing a JavaClassFile instance for each of them. The JavaClassFile
is fabricated to capture all the information available (see Table - B.3) in
a Java class file.

The next step is concerned with distilling the desired measures from
each of the class files. For this purpose, an on demand access to the
underlying byte code instructions of a given class file is necessary. Byte
codes are stored as a sequence of binary numbers in a class file [47].
In order to interpret them, these numbers have to be converted into the
instances of jCT-byte code instructions - the internal jCT representa-
tion of Java byte code instruction. This interpretation process is very
expensive in terms of memory consumption. To optimize the memory
usage profile, jCT adopts a mechanism practiced usually in graphical
user interface programming or operating systems. According to this
mechanism, the bytecodes of particular class are treated as resource
which is loaded and locked only on demand. After the required mea-
sures are distilled from a class, the byte codes are released to reduce
jCT’s runtime memory footprint.

B.4 jCT

jCT is a stand-alone Java application. In this section, we discuss jCT’s
main features, rationale for the associated design choice, flexibility of
incorporating evolving measures, on board mechanism for interaction
with the curated repositories, and runtime statistics to demonstrate its
time and memory consumption profile.
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B.4.1 Workflow
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Figure B.4: jCT aided approach for software analysis

An empirical research project, in general, starts with a goal upfront.
This goal is decomposed into matching set of research questions. An-
swering these questions demands appropriate set of metrics that are
required to be mined from the associated software artifacts under in-
vestigation. But as empirical studies are exploratory in nature, often
the necessity to investigate more promising aspects of software systems
arises. To cope with such evolving necessities, it is required to refine
research questions and corresponding set of metrics definitions.

jCT allow us not only to reflect such refinements, but also to incorpo-
rate new metrics definitions through offering extensible metrics data
mining infrastructure. Thus jCT supports empirical research to enrich
the current state of knowledge. The workflow diagram depicted in Fig-
ure B.4.
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B.4.2 Task-based Metrics Data Mining

Empirical research work entails diverse set of dimensions, depending
on the project-specific objectives. For example, a research project can
seek to answer the evolutionary trends of a set features in a particu-
lar software system, and on the other hand, a different project can be
interested in comparative analysis of a particular feature across differ-
ent software systems. Such wide variety of activities involve not only
different tasks, but also demand the use of completely different data
sets.

Such diverse nature of work not only demands a variety of metrics but
also involves various data sets. For example, the data set involve in
analyzing single software system as a case study is completely differ-
ent from the data set involved in the comparative study of hundreds of
software systems.

However, processing such diverse data sets efficiently is a challenging
task. One of the tactics to cope with such challenge is dividing the data
mining activity into several task-specific approaches. More precisely,
the divide and conquer strategy is applied on the task management
activity. The resulting benefits include the underlying process of mining
necessary metrics data is governed by only the associated task, and
thus offer better efficiency in data processing with increased time and
memory space utilization trade-offs.

To facilitate metrics data mining, jCT considers the following key tasks:

- Single Task - processing separate *.class and *.jar files;

- Source-Item Task - processing separate *.class and *.jar files from
the specified source directory;

- Bulk Task - processing systems as a bulk from the root directory;

- Qualitas Corpus Task - processing systems from Qualitas Corpus
data set as a bulk from the root directory using .properties file.
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- Helix Task - processing systems from Helix data set for studying
software evolution.

B.4.3 Support for New Measures

jCT offers the facility to weave newmeasures by employing an extraction
engine that provides necessary supports for incorporating the desired
metric definition. jCT adopts a light-weight extension mechanism for
capturing new metric definition. This mechanism is viewpoint-agnostic,
that is, the definition of new measures are not required to adhere to
any predefined analysis model. This yields the facility to tailor every
measure to the specific needs of the intended analysis. For example,
jCT can be used not only to capture a wide variety of (both existing
and new) object-oriented metrics, but also to emulate javap to build an
independent Java class file disassembler. In addition, jCT’s on board
mechanism for emitting separate class and method graphs offers the
flexibility of conducting independent graph-based analyses.

The jCT metrics extraction engine uses a 2-pass tactic in order to allow
for the resolution of mutual dependencies between classes. By default,
we always have to implement the first pass extraction method. The sec-
ond pass provides an empty default behavior and only needs to be over-
ridden when a measure requires it. For example, computing the CBO
metric [56] entails the first pass to construct a the type dependency
graph of the software system being analyzed, and the second pass can
compute the CBO metric for each class based on the graph constructed
during first pass.

jCT’s extraction engine supports the separation-of-concern for metric
definitions - an approach that enables to manipulate only the relevant
activities together by separating them based on their purpose. Each
newly defined measures is unique, and therefore, should be weaved
into jCT independently. For this purpose, jCT’s extraction engine is
equipped with a hook class MetricCollector - an extension point for
the definition of new measures. The key steps to incorporate a new
metric definition to jCT is depicted in Figure B.5.
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Figure B.5: Key Steps to Incorporate New Metrics Definition in JCT

The definition of new measures has to describe the recording process
of the attributes (required for computing the measures) per class. To
facilitate this process, the MetricCollector offers the required infras-
tructure by providing it with six pre-defined methods - that can be cus-
tomized to accomplish the desired task. The recording process might
require the facility to initialize any local variables, if necessary. This
is provided by the method setup. The flushHeader and flushData

emit any header information and the computed metric output dataset,
respectively.

The method setOption is responsible for hooking the defined measure
with the extraction engine, and providing appropriate command line
parameter for recognizing the new measure. jCT employs a configura-
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tion manager for registering all the available metric definitions with its
extraction engine. These metrics are instantiated while the extraction
engine boots up. Once the desired measure is plugged-in, it can be ac-
cessed by the provided parameter to commence the recording process.

B.4.4 Interaction With Curated Repositories

Software measures have to be properly validated. Basili et al. [32] de-
mand that software metrics need to be validated in order the demon-
strate their usefulness. The process of metrics validation has been ad-
dressed in several studies [122, 186, 227]. Schneidewind [186] char-
acterized six validity criteria: association, consistency, discriminative
power, tracking, predictability, and repeatability. The last criterion,
metric validation by repeatability, demands a sufficient number of re-
peated studies in order to achieve enough confidence on a particular
measure to demonstrate its effectiveness in signaling the level of qual-
ity of software artifacts. But conducting repeated empirical studies for
such validation task is a non-trivial task. It demands a suitable collec-
tion of software artifacts, and a compatible data mining framework as
pre-requisite.

The availability of a large set of open-source software has made this task
easier. But collecting an appropriate set of software systems that covers
a wide variety of domains is a non-trivial task. A biased input data set
might lead to obtaining misleading outcome. Special care, therefore,
must be taken in order to select a right set of representative software
systems for experimentation. The Qualitas Corpus [77] and Helix [218],
two recently emerged curated open-source software repositories, aim
exactly at this problem. Both offer combindly over 1200 releases of
more than 100 open source Java based software systems. A wide variety
of studies [140, 216] have already adopted them. Both come with the
promise to enable equally repeatable large-scale empirical studies of
code and the validation of software metrics in general.

The curated repositories are just one side of a coin. The lack of a suit-
able data mining framework that provides built-in supports for seam-
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less extraction of desired metric data from those repositories prevents
us from achieving the intended goal. jCT is equipped with on-board
mechanism for coping up with such large curated repositories. It can
distill desired metric data either from an entire repository at once or
offers the facility to support system by system metric extraction (in-
cluding large data set like netbeans-6.9.1 comprising 34,368 classes).
These functionalities yield the versatility necessary for both compara-
tive and evolutionary studies.

B.4.5 Runtime Profile

The design choice of jCT is governed by a set of well defined criteria that
aim at optimizing its runtime performance. This drives to adopt a non
meta model based tactic. This is significantly influenced by the incom-
petence of earlier light weight meta model based tools (e.g., JSeat [115],
JMetric [175]) that cannot cope up with larger systems. These become
fridged while processing large data set like Netbeans, Eclipse or JBoss
comprising many thousands of classes. JSeat employs the ASM byte-
code engineering library [46], and uses a multi-pass parsing approach
to parse Java class files. It has to rely on secondary persistent storage
system for dumping partially processed data. The final report gener-
ation process seeks to load back them again. The entire process de-
mands the consumption of extensive runtime memory. An early ver-
sion of JMetric cannot handle software systems comprising more than
5, 000 classes. Therefore, optimizing runtime resource consumption to
facilitate on the fly processing of larger systems is at the center of the
design focus.

What is the runtime performance profile of jCT? How does it behave
while processing large systems? To uncover the answers, we aim at
measuring its time and memory consumption statistics during run-
time. A commonly adopted method of performance profiling is to drive
a laboratory experiment with a standard and well accepted set of pop-
ulation (i.e., software systems). The contributing entities of this set
should represent a wide variety of domains (e.g., Database, SDK, Mid-
dleware, Games, Tools, etc.). This empowers us to unfold the inherent
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consequence of diverse population on jCT. Thus, the likelihood of any
bias induced by a dominating domain is reduced. In addition, the data
set should be composed of applications that are scattered well in their
size dimension. This assists in establishing a revealing relation to get
an insight into the memory consumptions by population of varying size.
Besides, the experiment has to be equipped with a well defined suite of
metrics. These must cover almost every aspects of the constructs as-
sociated with the Java programming language. This seeks to unveil the
behavior of jCT under varying nature of mining tasks associated with
each participating measure. Thus, the appropriate rationale forms the
required ground for both the population and metric suite, and offers us
with a means to characterize the runtime profile of jCT.

For this purpose, we use Qualitas Corpus version 20101126r [77]. We
extract 1401 different object-oriented class, method, and fieldmeasures
relating to both size and complexity (e.g., Number of Methods [217],
Number of Getters [140], or Response for a Class [56]).

To conduct this laboratory test, we set up an experimental environment
with a Mac Pro empowered by one 2.66 GHz Quad-Core processor, 8GB
1066 MHz DDR3 memory, and running Mac OS X 10.6.6. We employ
jCT to run in this context assigning the task to mine the predefinedmet-
ric suite from the provided population. The runtime scenario reveals
that only 14 built-in Java and jCT types consume 80% of the runtime
memory - strings (i.e., char[]) occupying more than 30% alone. String
naturally is a memory intensive data type. We cannot afford to imple-
ment a design without employing minimal strings, and therefore, the
design has to seek for reducing the cost incurred. jCT employs a ded-
icated string heap to adhere to one of the design criteria - optimize
memory consumption. This string heap grows in memory as metric ex-
traction task proceeds for a particular software system. Once a job is
completed, it is cleared to remove unused strings from memory before
another system from the pipeline enters into the execution engine.

1We record separate counts for storage and visibility modifiers. For example, the
Number of Methods of a class yields 24 sub-measures: 6 for static methods, 6 for
instance methods, 6 for abstract static methods, and 6 for abstract instance meth-
ods. It is this detailed breakdown that allows for a fine-tuned analysis of developer
behavior [140,217].
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Runtime Object Allocation
Active Instances Total Instances

Rank Type Count Size in % Type Count Size in %
1 char[] 56 34.59 char[] 56 31.51

2 ConstantUtf8 56 8.53 int[] 56 24.34
RedBlackTree.RedBlackNode 3 8.07

3 byte[] 52 6.68 ILInstruction 56 12.67

4 LineNumberInfo 37 5.94 ILArgument 56 5.58
LocalVariableInfo 33 5.17

5 ContantNameAndType 13 4.66 ILShortIndexToConstantPoolArgument 45 4.22
ConstantPoolEntry[] 29 4.48 EntryIterator 8 3.20

Figure B.6: Memory profiling statistics.

The memory profiling statistics of metrics extraction with jCT is de-
picted in Figure B.6. The presented data reveals two important as-
pects, Active instance, and Total instance of object allocation profile.
The most memory-intensive active instances are comprised of class file
(e.g., ConstantUtf8) and dataset (e.g., RedBlackTree.RedBlackNode)
related entities. That is, only the data needed to represent Java classes
in jCT is kept in memory at all times, On the other hand, the most
memory-intensive total instances are associated the light-weight meta
model for the analysis of IL-bytecode (i.e., the internal jCT representa-
tion of the instruction stream). However, these instances are released
as soon as the metrics extraction for the host class has been completed,
hence easing the cumulative demand on memory for metrics extraction
in jCT.
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Figure B.7: Runtime Statistics.

jCT’s design aims at maintaining a linear time and space complexity
while extracting metric data. The runtime profile depicted in Figure
B.7 demonstrates that it yields O(n). Both memory consumption and
running time are proportional to the size of the system being analyzed.
We observe a strong positive correlation between system size, in terms
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of number of classes, and memory consumption (i.e., ρ = 0.98) and run-
ning time (i.e., ρ = 0.96). The linear fits for memory consumption and
running time are shown in Figure B.7(a) and Figure B.7(b), respectively.

B.5 Summary

We introduced a data mining framework, jCT - that facilitates extrac-
tion of not only existing software metrics, but also the emerging ones by
providing the necessary means to incorporate new metrics definitions
into the infrastructure through suitable extension point. jCT improves
the flexibility of conducting empirical studies as it does not confined
itself to any predefined set of measures, and eliminates the engineer-
ing challenges associated with necessary software metric data mining
tasks.

Moreover, we discussed the underlying rationale of different aspects of
this infrastructure (e.g., underlying motivating factors for design de-
cisions, architecture, workflow). We showed jCT’s capability to cope
easily with large scale data set while maintaining linear time and space
complexity in the extraction process.

jCT can support us by providing simple yet effective means for conduct-
ing large scale empirical studies, and allow us to advance the current
understanding of programming language feature usage patterns in par-
ticular, and software engineering in general.
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Appendix C

Analyzing Qualitas Corpus
using jCT - An Example

jCT has built-in support for mining necessary software metrics from re-
cently emerged curated repositories such as Qualitas Corpus and Helix.
To demonstrate how jCT interacts with them, we present an example to
extract the metrics: Getters/Setters Variations [140], Number of Meth-
ods [217], and the CK metrics suite [56] from the Qualitas Corpus.

1 java −Xms512m −Xmx1024m jct .Main −qc . . / . . /QCInput
2 −verbose −log log −output . . / . . /Output
3 −gssummary gssummary −nom nom −ck ck

Figure C.1 shows the structure of input and output directories for Qual-
itas Corpus analysis.

Post Processing Raw Data

jCT produces raw data. Once all data has been mined, it can be post-
processed to retrieve the necessary information, to perform statistical
analysis. Figure C.2 shows an overview of possible post-processing ac-
tivities.
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Figure C.1: Processing Qualitas Corpus.

hqd

Figure C.2: HSQLDB Post Processing.
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Appendix D

Raw Metric Data

We provide the raw metrics data used in this study (in the attached
DVD). The data set is divided into three categories: field analysis (lo-
cated in MetricData/FieldAnalysis), property analysis (located in
MetricData/PropertyAnalysis), and inner class analysis (located in
MetricData/InnerClassAnalysis). The metrics data for each soft-
ware system is in a file with the format SystemName-Version.csv.

We provide illustrative samples of fields, properties and inner classes
data of the system apache ant-1.8.1 in listing D.1, D.2, and D.3,
respectively. The first line is the header, and each of the following lines
is a class along with its attributes as indicated by the associated header.
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Chapter D. Raw Metric Data

1 Class ,Type ,NoGenSA ,NoSA ,NoPubSA ,NoProSA ,NoPriSA ,NoDefSA ,NoGenA ,NoA ,NoPubA ,NoProA ,
NoPriA ,NoDefA

2 org .apache .tools .ant .AntClassLoader ,C,4 ,6 ,0 ,0 ,6 ,0 ,0 ,10 ,0 ,0 ,10 ,0
3 org .apache .tools .ant .AntClassLoader$ResourceEnumeration ,C,0 ,0 ,0 ,0 ,0 ,0 ,1 ,3 ,0 ,0 ,3 ,0
4 (more data . . . )

Listing D.1: Field Data - ant-1.8.1 (sample only)

1 Class ,DataHolderCategory ,NoPubG ,NoProG ,NoPriG ,NoDefG ,NoPubRG ,NoProRG ,NoPriRG ,NoDefRG ,
NoPubVG ,NoProVG ,NoPriVG ,NoDefVG ,NoPubPG ,NoProPG ,NoPriPG ,NoDefPG ,NoPubS ,NoProS ,
NoPriS ,NoDefS ,NoPubRS ,NoProRS ,NoPriRS ,NoDefRS ,NoPubVS ,NoProVS ,NoPriVS ,NoDefVS ,
NoPubPS ,NoProPS ,NoPriPS ,NoDefPS ,NoPubBP ,NoProBP ,NoPriBP ,NoDefBP ,NoPubNBP ,NoProNBP
,NoPriNBP ,NoDefNBP ,NoPubGLM ,NoProGLM ,NoPriGLM ,NoDefGLM ,NoPubSLM ,NoProSLM ,NoPriSLM
,NoDefSLM

2 org .apache .tools .ant .AntClassLoader
,0 ,2 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ,1 ,0 ,0 ,0 ,5 ,0 ,0 ,0 ,4 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,1 ,0 ,0 ,0 ,0 ,
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

3 org .apache .tools .ant .AntClassLoader$ResourceEnumeration
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

4 (more data . . . )

Listing D.2: Property Data - ant-1.8.1 (sample only)

1 Class ,DIT ,SuperTypes ,Interfaces ,Type ,Classification ,EnclosingClass ,NLevel ,NDIC ,NDNC ,
NDMC ,NDLC ,NDAC ,PubNC ,ProNC ,PriNC ,DefNC ,PubNI ,ProNI ,PriNI ,DefNI ,PubMC ,ProMC ,PriMC ,
DefMC ,LocalC ,AnonymousC

2 org .apache .tools .ant .AntClassLoader ,1 ,java .lang .ClassLoader ,org .apache .tools .ant .
SubBuildListener ,C,0 , ,0 ,1 ,0 ,1 ,0 ,0 ,2 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0

3 org .apache .tools .ant .AntClassLoader$ResourceEnumeration ,1 ,java .lang .Object ,java .util .
Enumeration ,C ,2 ,org .apache .tools .ant .AntClassLoader,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,
0 ,0 ,0 ,0 ,0 ,0

4 (more data . . . )

Listing D.3: Inner Class Data - ant-1.8.1 (sample only)
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